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Peritoneal dialysis assists residual renal
function to maintain glucose tolerance: a
prospective observational study
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Abstract

Background: Renal failure can cause the deterioration of glucose metabolism and increase blood glucose fluctuations,
which have been reported to be a factor in the progression of vascular disorders. Little information is available on the
daily variation in blood glucose levels in patients with end-stage renal disease (ESRD) and peritoneal dialysis (PD).

Methods: Daily plasma glucose excursion was evaluated by continuous glucose monitoring (CGM) for 24–72 h.
Fourteen ESRD patients without type 2 diabetic nephropathy (non-diabetic patients) and six ESRD patients with type 2
diabetic nephropathy (diabetic patients) participated in this study. ESRD patients started PD which were undergone in
only the daytime, and not in the night time. As the PD solution, Dianeal®1.5 % PD-2N (1.5 L) was infused
intraperitoneally for 3 h three times daily. The patients received standard meals with a total calorie intake of 30 kcal/kg/
day and a protein intake of 0.8 g/kg/day before and after initiation of PD. Daily glucose profiles were measured both
2 week before and 1 week after the commencement of PD with CGM system (CGMS).

Results: CGMS parameters were compared between before and after the initiation of PD. In non-diabetic patients
with ESRD, the maximum glucose concentration (GC) and area under the curve (AUC) of GC >140 mg/dL
significantly decreased after PD initiation. In diabetic patients with ESRD, the mean GC, SD, minimum value, AUC
of GC >140 mg/dL, and maximum nocturnal GC significantly decreased, while the percentage of nocturnal
GC <70 mg/dL markedly increased after PD commencement. In all patients, there was a significant negative
correlation between the incidence of hypoglycemia and residual renal function before the initiation of PD and
the correlation disappeared after PD initiation. In all patients, the GC range and coefficient of variation were
negatively associated with the peritoneal Kt/V value.

Conclusions: Residual renal function promotes the maintenance of glucose tolerance in patients with ESRD.
Glucose fluctuation improved shortly after initiation of PD, whereas nocturnal hypoglycemia was evident in
diabetic patients.
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Background
In patients with renal failure, glucose metabolism is
abrogated, and fluctuation in plasma glucose levels is
significantly enhanced because of increased insulin resist-
ance [1–7]. Recent clinical studies have demonstrated that
acute glucose excursions, postprandial hyperglycemia, and
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hypoglycemia, in addition to mean blood glucose levels,
have a major influence on vascular endothelial function
and are related to cardiovascular disease through the pro-
motion of oxidative stress [8–11]. In in vitro research,
apoptosis of human umbilical vein endothelial cells was
shown to increase during glucose fluctuations as com-
pared to during constant high glucose concentrations
(GCs) [12]. However, blood glucose fluctuations of
patients with end-stage renal disease (ESRD) have not
been precisely evaluated [13, 14].
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Fig. 1 Protocol of the present study. Time schedules, diet, and peritoneal dialysis (PD) protocol for the present study. Continuous glucose monitoring
(CGM) was performed 2 weeks before and 1 week after the initiation of PD

Table 1 Baseline characteristics and biochemical parameters before and after PD

Variables ESRD (n = 20)

Non-diabetic
(n = 14)

Diabetic
(n = 6)

Age (years) 58.07 ± 12.85 58.17 ± 7.17

Sex (male/female) 11/3 6/0

BMI (kg/m2) 23.54 ± 2.90 29.76 ± 6.42

Antihypertensive agents

ARB/ACE inhibitor 6 (42.86 %) 6 (100 %)

Ca channel blocker 12 (85.71 %) 4 (66.67 %)

Hypoglycemic drugs

Insulin 4 (66.67 %)

Dpp-4 inhibitor 1 (16.67 %)

Sulfonylurea 0 (0 %)

α-GI 2 (33.33 %)

Biochemical parameters Before PD After PD Before PD After PD

Total protein (mg/dL) 6.02 ± 0.98 6.39 ± 0.71* 5.60 ± 0.86 6.17 ± 0.50*

Albumin (g/dL) 3.38 ± 0.75 3.43 ± 0.59 2.93 ± 0.62 3.15 ± 0.56

BUN (mg/dL) 71.64 ± 16.70 53.08 ± 11.64** 67.47 ± 20.76 48.10 ± 12.62**

Creatinine (mg/dL) 10.90 ± 3.93 9.96 ± 3.46* 10.50 ± 1.85 10.08 ± 2.21

e-GFR (mL/min/1.73 m2) 4.89 ± 1.91 4.84 ± 1.39

HbA1c (%) 5.33 ± 0.33 5.58 ± 0.39 6.22 ± 1.32 6.43 ± 1.25

GA (%) 15.60 ± 4.18 16.90 ± 3.41 15.84 ± 2.78 16.20 ± 3.05

WBC (103/μL) 6.38 ± 1.65 6.01 ± 1.14 7.85 ± 1.84 7.43 ± 1.45

Hb (g/dL) 9.80 ± 1.08 10.40 ± 0.87 10.12 ± 0.87 11.08 ± 0.70*

CRP (mg/dL) 0.14 ± 0.13 0.37 ± 0.63 0.52 ± 0.90 0.35 ± 0.46

Results are shown as mean ± SD
ESRD end-stage renal disease, BMI body mass index, ACE angiotensin-converting enzyme, ARB angiotensin-receptor blocker, Dpp-4 inhibitor dipeptidyl peptidase 4
inhibitor, α-GI α-glucosidase inhibitor, BUN blood urea nitrogen, e-GFR estimated glomerular filtration rate, HbA1c hemoglobin A1c, GA glycoalbumin, WBC white
blood cell, Hb hemoglobin, CRP, C-reactive protein
**p < 0.01 vs. before PD; *p < 0.05 vs. before PD
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The recently developed continuous glucose moni-
toring system (CGMS) allows precise assessment of
daily blood glucose fluctuations, hypoglycemia, and
hyperglycemia [15–20]. The present study was
performed to determine the blood glucose profiles of
patients with ESRD before and after the initiation of
peritoneal dialysis (PD) in order to evaluate the
effects of this dialysis modality. Furthermore, residual
renal function plays a key role in regulating the blood
glucose level of patients with ESRD [5, 6, 21, 22].
Focusing on these points, the blood glucose level
was measured before and at 1 week after introduc-
tion of PD in the prospective study. This is the first
study to compare glucose metabolism in patients
with ESRD before and after the initiation of PD,
which causes dynamic changes in systemic glucose
homeostasis.
a

b

Fig. 2 Daily glucose concentration (GC) profile based on continuous gluco
patients. a Daily CG profile for each ESRD patient without diabetes before
ESRD patient without diabetes after PD initiation (n = 14). The x-axis represe
level. Each line corresponds to the result of one subject. The GC range of 7
which ranges from 0800 h to 2000 h, is indicated by a box on the x-axis
Methods
Aims
The aims are to reveal the exacerbation of blood glucose
fluctuation in ESRD patients and how peritoneal dialysis
affects the glucose metabolism in the induction period.

Participants
Twenty patients without infectious diseases including an
exit-site infection and peritonitis, with a mean age of
59.63 years, participated in this study. Six patients had
type 2 diabetic nephropathy and 14 patients had no his-
tory of diabetes, in our medical record. They underwent
CGM after we acquired their informed consent.

Study design and protocol
This study was conducted as a prospective observational
study. The CGM device used in this study was an iPro®
se monitoring (CGM) in non-diabetic end-stage renal disease (ESRD)
peritoneal dialysis (PD) initiation (n = 14). b Daily CG profile for each
nts the time at which GC was measured. The y-axis represents GC
0–140 mg/dL is shadowed in blue in the graph. The daytime period,



Table 2 The CGMS parameters of non-diabetic patients with ESRD

CGMS parameters ESRD (non-diabetic)
(n = 14)

Before PD After PD

Mean GC (mg/dL) 120.81 ± 19.29 116.30 ± 18.07

SD of GC (mg/dL) 26.22 ± 13.14 21.63 ± 7.17

Range of GC (mg/dL) 117.57 ± 57.82 95.07 ± 35.92

Minimum GC (mg/dL) 75.79 ± 20.80 89.86 ± 44.10

Maximum GC (mg/dL) 193.36 ± 55.64 162.50 ± 42.72*

AUC of GC >140 mg/dL (mg · min/dL) 6.98 ± 11.04 4.16 ± 6.96*

Percentage of GC <70 mg/dL 4.70 ± 7.09 5.51 ± 8.02

Percentage of GC ≥70 to <180 mg/dL 88.74 ± 11.37 91.31 ± 9.07

Percentage of GC ≥180 mg/dL 6.56 ± 11.74 3.19 ± 7.08

Mean nocturnal GC (mg/dL) 107.53 ± 16.64 106.64 ± 22.73

SD of nocturnal GC (mg/dL) 12.96 ± 9.60 13.58 ± 9.10

Range of nocturnal GC (mg/dL) 57.36 ± 40.58 53.14 ± 29.01

Minimum nocturnal GC (mg/dL) 84.36 ± 20.12 85.64 ± 15.93

Maximum nocturnal GC (mg/dL) 141.71 ± 37.56 138.79 ± 36.58

Percentage of nocturnal GC <70 mg/dL 6.68 ± 13.91 10.19 ± 20.48

Percentage of nocturnal GC ≥70
to <180 mg/dL

91.22 ± 14.96 86.18 ± 22.76

Percentage of nocturnal GC ≥180 mg/dL 2.10 ± 7.79 3.64 ± 13.35

Results are shown as mean ± SD
AUC area under the curve, CGMS continuous glucose monitoring system,
ESRD end-stage renal disease, GC glucose concentration, PD peritoneal dialysis,
SD standard deviation
*p < 0.05 vs. before PD
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2 CGM (Medtronic, Minneapolis, MN). The recorder of
the iPro® 2 is small (3.5 × 2.8 × 0.9 cm), lightweight
(5.7 g), and waterproof, allowing it to be comfortably
worn on the body. All CGM data are strongly correlated
with blood glucose levels because they are adjusted for
data obtained every 8 h by self-monitoring of blood
glucose levels [23–25]. The protocol of the study is
shown in Fig. 1. Baseline CGM data were obtained
2 weeks before the initiation of PD by continuous moni-
toring for 24 to 72 h. CGM was repeated 1 week after
the initiation of PD and was performed for 24 to 72 h.
During CGM, PD was performed by infusing 1.5 L of
1.5 % glucose dialysate solution (Dianeal, Baxter,
Chicago, IL) for 3 h, three times per day, starting at
10:00 AM. A PD catheter was inserted 1 week before
the initiation of dialysis. None of the subjects developed
any infections, including catheter exit-site infections,
while CGM was performed, before and after the
initiation of PD. None of the subjects were positive for
C-reactive protein at the time of CGM. All subjects were
hospital patients receiving a standard hospital diet,
regardless of PD status, with a protein intake of 0.8 g/kg,
salt intake of 6 g/day, and total calorie intake of 30 kcal/
kg/day. No snacks were allowed between meals. This
diet was provided throughout the present study. We also
confirmed the participants ate almost all the diet, in our
medical record. Because retention of dialysate for PD
induces abdominal distension, food consumption might
be reduced. In the present study, dialysate was only retained
in the peritoneal cavity for 9 h a day, so distension-
associated reduction of food consumption did not occur.
Anti-diabetic therapy, including oral hypoglycemic
reagents or insulin injection, was not changed after
PD initiation. This study was approved by the Ethics
Committee of Keio University School of Medicine
(the IRB number; 20120065) and was registered with
the University Hospital Medical Information Network
(UMIN) clinical trial registry before the start of the
study (ID: UMIN000013483). After each patient was
provided with a detailed explanation of the study,
informed consent to participate was obtained.

Statistics
Statistical analyses were performed using Microsoft
Office Excel 2007 and IBM SPSS statistics 22.0 software
(IBM Corp., Armonk, NY). The Kolmogorov-Smirnov
test was used to examine the normality of data distribu-
tion, after which a paired t test, ANOVA, or a nonpara-
metric procedure (Wilcoxon signed-rank test) was used to
confirm statistically significant differences, with p < 0.05
indicating significance. Results are expressed as the
mean ± standard deviation (SD). The mean blood
glucose levels of each patient were calculated and
compared before and after the introduction of PD.
Therefore, the effects of differences in the duration of
CGM measurement before and after introduction of
PD were excluded.
Results
Baseline characteristics of the subjects and biochemical
parameters before and after PD in all patients
Baseline characteristics of the patients without diabetic
nephropathy with ESRD (non-diabetic ESRD, n = 14)
and patients with type 2 diabetic nephropathy with
ESRD (diabetic ESRD, n = 6) are shown in Table 1.
Among the two groups, mean age, sex ratio, and body
mass index were similar. With respect to oral antihyper-
tensive medications, non-diabetic ESRD patients were
primarily taking calcium channel blockers, and all
diabetic ESRD patients were taking ARBs. Diabetic
ESRD patients were treated primarily with insulin or α-
glucosidase inhibitors as hypoglycemic drugs.
In non-diabetic ESRD patients, TP increased significantly

after the introduction of PD, while BUN and creatinine
decreased significantly. In diabetic ESRD patients, TP and
Hgb increased significantly after initiation of PD, while
BUN declined significantly after its introduction (Table 1).
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CGM results before and after initiation of PD in non-diabetic
ESRD patients
The daily GC profiles before and after initiation of PD in
non-diabetic patients are shown in Fig. 2a, b, respec-
tively. The data for each CGM parameter before and
after the initiation of PD are listed in Table 2. The
maximum GC level and the area under the curve (AUC)
of GC >140 mg/dL significantly decreased after the initi-
ation of PD. Other CGM parameters were not altered
after initiation of PD. These data indicated that the
increased glucose excursion in patients with ESRD was
partially ameliorated by PD.

CGM results before and after initiation of PD in diabetic
ESRD patients
The profiles of GC changes in diabetic ESRD patients
before and after PD initiation are shown in Fig. 3a, b,
respectively. Data for each CGM parameter before and
after PD initiation are listed in Table 3. The mean GC
level, SD, AUC of GC >140 mg/dL, and maximal
a

b

Fig. 3 The daily glucose concentration (GC) profile based on continuous g
patients. a Daily CG profile of each ESRD patient with diabetes before perit
performed for 17 days (total number of days for all patients) in six patients
diabetes after PD initiation (n = 6). After initiation of PD, CGM was performe
represents the time at which GC was measured. The y-axis represents GC le
between 70 and 140 mg/dL is shadowed in blue in the graph. The daytime
the x-axis
nocturnal GC levels significantly decreased after the
initiation of PD. Of note, in diabetic ESRD patients,
minimum GC levels significantly decreased, and the per-
centage of nocturnal GC <70 mg/dL significantly in-
creased after PD initiation. In diabetic patients, PD
resolved glucose fluctuations, similar to what was ob-
served in non-diabetic ESRD patients. However, noctur-
nal GC levels tended to be lower after the initiation of
PD, which was attributed to nocturnal hypoglycemia.

Correlations of biochemical and PD-related parameters
with CGM parameters
The correlations between biochemical and CGM param-
eters were examined in non-diabetic ESRD patients and
diabetic ESRD patients. The correlation between CGM
parameters and the index of dialysis efficiency, including
peritoneal Kt/V, renal Kt/V, and total Kt/V, were also
analyzed. In all patients, the incidence of hypoglycemia
(GC <70 mg/dL) was negatively correlated with
residual renal function before the start of PD (Fig. 4a,
lucose monitoring (CGM) in diabetic end-stage renal disease (ESRD)
oneal dialysis (PD) initiation (n = 6). Before initiation of PD, CGM was
with diabetic ESRD. b Daily CG profile of each ESRD patient with
d for 10 days in the same six patients with diabetic ESRD. The x-axis
vel. Each line corresponds to the result of one subject. The GC range
period, which ranges from 8:00 to 20:00, is indicated by a box on



Table 3 CGMS parameters of diabetic patients with ESRD

CGMS parameters Before PD
(n = 6)

After PD
(n = 6)

Mean GC (mg/dL) 148.26 ± 25.47 128.18 ± 23.33*

SD of GC (mg/dL) 35.63 ± 13.23 26.84 ± 9.65*

Range of GC (mg/dL) 153.33 ± 55.80 116.33 ± 38.17

Minimum GC (mg/dL) 81.83 ± 20.37 77.50 ± 28.27*

Maximum GC (mg/dL) 235.17 ± 54.16 193.83 ± 30.75

AUC of GC >140 mg/dL (mg ·min/dL) 21.29 ± 18.24 9.49 ± 10.24**

Percentage of GC <70 mg/dL 1.44 ± 2.64 8.41 ± 8.69

Percentage of GC ≥70 to <180 mg/dL 77.54 ± 17.20 81.46 ± 11.35

Percentage of GC ≥180 mg/dL 21.03 ± 18.42 10.14 ± 12.10

Mean nocturnal GC (mg/dL) 146.95 ± 30.66 120.89 ± 34.62

SD of nocturnal GC (mg/dL) 26.40 ± 12.94 27.49 ± 18.55

Range of nocturnal GC (mg/dL) 100.83 ± 49.47 86.17 ± 38.39

Minimum nocturnal GC (mg/dL) 108.67 ± 36.72 80.50 ± 29.74

Maximum nocturnal GC (mg/dL) 209.50 ± 49.14 166.67 ± 37.54*

Percentage of nocturnal GC <70 mg/dL 1.24 ± 2.11 21.99 ± 19.52*

Percentage of nocturnal GC ≥70
to <180 mg/dL

77.80 ± 24.88 61.11 ± 30.60

Percentage of nocturnal GC ≥180 mg/dL 20.97 ± 25.74 16.90 ± 28.74

Results are shown as mean ± SD
AUC area under the curve, CGMS continuous glucose monitoring system,
ESRD end-stage renal disease, GC glucose concentration, PD peritoneal dialysis,
SD standard deviation
**p < 0.01 vs. before PD, *p < 0.05 vs. before PD
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left; R = −0.539, p = 0.014). However, there was no sig-
nificant correlation between the incidence of hypoglycemia
and residual renal function after commencing PD (Fig. 4a,
right). In all patients, after the initiation of PD, peritoneal
Kt/V showed a significant correlation with the GC coeffi-
cient of variation as well as with GC range (Fig. 4b),
indicating that peritoneal function has some influence on
GC fluctuation, regardless of diabetic status. After the
introduction of PD, the blood glucose level and the SD
were 130.89 ± 19.67 mg/dL and 17.81 ± 8.50, respectively,
when PD solution was retained for 9 h (between 10:00 and
19:00). Before the introduction of PD, the blood glucose
level and the SD was 137.45 ± 27.83 mg/dL and 22.54 ±
12.86, respectively (between 10:00 and 19:00). There were
no significant differences of blood glucose and SD between
before and after the introduction of PD (130.89 ± 19.67 vs
137.45 ± 27.83, p = 0.247 and 17.81 ± 8.50 vs 22.54 ± 12.86,
p = 0.062, respectively).

Discussion
The GC data obtained by CGM in the present study
revealed that ESRD patients had abnormal glucose
metabolism, even when diabetes was not present. In
these patients, both mean GC and the GC SD increased.
Progression of renal failure causes a deterioration of
insulin sensitivity [3–7], and improvement can occur
after hemodialysis (HD) or PD [6, 26, 27]. Dialysis also
increases the insulin sensitivity of pancreatic β cells and
peripheral tissues [6], which can contribute to restor-
ation of β cell function [21, 28, 29]. Several underlying
mechanisms have been suggested to explain uremia-
associated defects in insulin sensitivity. Urea induces
reactive oxygen species that exacerbate insulin resistance
in mouse visceral adipose tissue [7]. Other uremic
factors, including acidemia, have also been reported to
influence glucose metabolism [22, 30, 31]. In the present
study, due to these uremic factors, daily GC levels and
daily GC fluctuations in the CGMS were increased in
non-diabetic patients.
It is conceivable that PD itself is disadvantageous for

the control of systemic blood glucose levels, since the
PD solution contains 1.5 % glucose (1500 mg/dL).
However, in this study, it was revealed that there was
little deterioration in glucose metabolism while PD was
performed. In the early phase after introduction of PD,
there were no significant differences of the mean blood
glucose levels and SD at the times with retention of PD
solution (from 10:00 to 17:00) between before and after
introduction of PD. It has been reported that, unlike
with PD solutions containing 4.25 % glucose, PD solu-
tions containing 1.5 % glucose did not cause excessive β
cell stimulation and had few adverse effects on glucose
metabolism [32]. Although the peritoneum is highly
permeable and absorption of glucose occurs rapidly, free
water and uremic substances that can induce insulin
resistance can be rapidly and simultaneously removed,
thereby preventing an increase in blood glucose.
DeFronzo et al. have reported that HD improves insulin
resistance [6], while it has also been reported that
uremic toxins, p-cresyl sulfate and urea, induce insulin
resistance [3, 7]. The balance between the addition of
glucose dialysate and the removal of free water and
uremic substances may prevent the elevation of GC,
despite the glucose loading from the PD solution.
Our data also suggested that hypoglycemia occurs in

diabetic patients because insulin resistance is increased
due to reduced renal function, leading to hyperinsuline-
mia, while hypoglycemia may occur in non-diabetic pa-
tients due to reduction of renal gluconeogenesis related
to renal dysfunction [33–35]. This suggests that residual
renal function can have an important influence on the
blood glucose profile. The incidence of hypoglycemia
was lower among patients who had better residual renal
function before initiation of PD. After the start of PD,
such an influence was no longer observed. Because PD
reduced uremic toxicity, the tendency for patients with
impaired renal function to be prone to develop
hypoglycemia completely disappeared (Fig. 4a, right).
The effect of renal dysfunction may be attributable to
retention of insulin or uremic toxins that impair glucose
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Fig. 4 The relationships between biochemical and peritoneal dialysis (PD)-related parameters and continuous glucose monitoring (CGM) parameters.
a Correlation between the percentage of GC <70 mg/dL and renal Kt/V, before and after the initiation of PD. b Correlation between the PD-related
parameters and CGM parameters in all ESRD patients
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tolerance, and PD may compensate for the effect. During
long-term PD, residual renal function might decline fur-
ther and PD might not be able to remove sufficient
uremic toxins, which might then induce insulin resist-
ance and inflammation. Consequently, glucose in PD
dialysates might increase the blood glucose level. But
further research is needed to verify this assumption. The
peritoneal Kt/V value was negatively correlated with the
parameters for GC excursion, the coefficient of variation,
and range of GC. Although glucose load increases with
high peritoneal efficiency, uremic substances might have
been more efficiently removed. This escape from the
uremic condition is more important for GC fluctuations.
These findings suggest that PD may reduce the risk of
hypoglycemia over the medium to long term after initi-
ation, not shortly after initiation, especially in patients
with low residual renal function.
HD has also been shown to improve both β cell

sensitivity to glucose and tissue sensitivity to insulin
[6]. However, HD is an intermittent treatment that is
performed for several hours at a time, three times per
week. Therefore, HD causes large fluctuations in the
levels of uremic toxins and body fluid homeostasis,
and it is not well understood how such fluctuations
affect blood glucose levels [26, 27] and nocturnal
hypoglycemia [36]. On the other hand, PD is per-
formed slowly and continuously, leading to more
stable uremia correction as compared to that with
HD. Unlike the PD protocol in the present study, if
dialysate is retained in the peritoneal cavity overnight
as when ordinary PD is performed, PD might also be
able to reduce the occurrence of nocturnal
hypoglycemia. Hypoglycemia in patients with chronic
kidney disease or patients on dialysis could increase
the risk of stroke [37]. The ACCORD study suggested
that severe hypoglycemia was likely to result in
cardiovascular events [38]. Moreover, a meta-analysis
revealed that severe hypoglycemia was associated with
a 2.05-fold higher risk of cardiovascular disease, while a
bias analysis of the data showed that severe hypoglycemia
was correlated with an increased risk of cardiovascular
events, unless the underlying disease was related to both
severe hypoglycemia and cardiovascular risk factors [39].
A large-scale study showed that ESRD patients on PD had
a better prognosis than did those on HD for several years
after the initiation of dialysis therapy [2, 40, 41]. This
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difference may be partly attributed to the advantageous
effects of PD on glucose metabolism. On the other hand,
our study highlights the risk of hypoglycemic adverse
effects in diabetic ESRD patients at the initiation of PD.
The incidence of nocturnal hypoglycemia was significantly
higher after the initiation of PD in patients with ESRD
due to diabetic nephropathy. In patients with diabetic
ESRD, HOMA-IR was high before the initiation of PD
and declined after PD was commenced, although the
decrease was not significant (data not shown). In patients
with non-diabetic ESRD, HOMA-IR was not particularly
high before the initiation of PD and showed little change
after PD was commenced. These findings appear to
suggest that the incidence of nocturnal hypoglycemia
might be higher in patients with diabetic ESRD, after
the initiation of PD. Physicians should be aware of
the risk of nocturnal hypoglycemia, especially in dia-
betic patients. In the present study, the mean HbA1c
was 4.82 ± 0.37 in patients with hypoglycemia and
5.66 ± 0.81 in patients without hypoglycemia, and the
difference was significant (p = 0.039). Therefore, we
suggest that the target HbA1c was 5.6 %. However, further
research will be needed to confirm this conclusion.
Limitations of this study are it is a single-center

study and a small-sized study. However, this study
was significant because this is the first study evaluat-
ing the blood glucose fluctuation before and after the
PD initiation under the same condition in meals and
PD menu.
Conclusions
We found that daily GC fluctuation was disturbed in
ESRD patients irrespective of their diabetic condition
and that PD had a beneficial effect on blood glucose
levels. We also demonstrated that the risk of nocturnal
hypoglycemia was increased, particularly in diabetic
patients at the initiation of PD. To detect these changes
in glucose metabolism, monitoring GC with CGMS is
recommended in ESRD patients, especially when they
begin peritoneal dialysis therapy.
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