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An overview of AVF maturation and
endothelial dysfunction in an advanced
renal failure
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Abstract: Life expectancy in patient with established kidney failure is considerably shortened with worsening
quality of life. Through the provision of renal replacement therapy, survival and quality of life of advanced renal
disease patients can be markedly improved. Haemodialysis and peritoneal dialysis are the treatment modalities in
patients with end-stage renal disease. The efficiency of haemodialysis treatment relies on the functional status of
vascular access. Vascular access and its related problems represent the main factors that determine a rise in the rate
of incidence of the disease among haemodialysis patients and, consequently, a rise in the healthcare expenses.
Arteriovenous fistula is the most efficient method, as it has a low risk of infection and mortality, and can ensure
long-term functional access. However, maturation of an arteriovenous fistula is a complex process and is not well
understood; significant numbers of arteriovenous fistula fail to develop sufficiently prior to their use for haemodialysis
due to either lack of vessel maturation or spontaneous thrombosis. There are multiple blood markers and human
factors that contribute to the maturation of fistula. Endothelial function is one of the most important determinants of
arteriovenous fistula maturation. Early fistula failure is usually due to thrombosis which can be triggered by haematoma,
by low flow rates resulting from low blood pressure, or by a hypercoagulable state. Impairment of endothelial function
is associated with decreased arterial remodelling and final venous lumen diameter. Arteriovenous fistula anastomoses
need early proliferation of endothelial cells to restore the barrier, permeability, and biochemical monitoring roles of
endothelial cells in managing vascular repair, local thrombosis, neointimal hyperplasia, and inflammation. The purpose
of this review was to discuss the maturation of AVF and endothelial dysfunction.
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Background
Chronic kidney disease (CKD) is a critical condition with
considerable public health implications. The global mean
(95%CI) CKD prevalence in five stages was 13.4% (11.7–
15.1%) and stages 3–5 was 10.6% (9.2–12.2%) [1]. In 2014,
the number of adult patients starting renal replacement
therapy (RRT) in the UK was 7411 equating to an incidence
rate of 115 pmp, compared with 109 pmp in 2013 [2]. There
are a number of factors, which have to be taken into ac-
count when deciding the usage of RRT in patients suffering
from advanced renal disease, such as evaluation of electro-
lyte and acid-base balance, intravascular volume, uraemia,
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dietary needs, haemodynamic status, urine output, and the
pathology of the disease in each individual case. The benefits
of RRT have to be compared with the possible hazards of
surgical intervention, such as bleeding caused by anticoagu-
lants, as well as all types of complications that accompany
the central venous access. Many patients with chronic
kidney disease are still unknown, because the serum creatin-
ine fails to identify decreasing kidney function, especially in
women and old individuals [3, 4]. According to the Quality
and Outcomes Framework, the diagnosis of chronic kidney
disease and improvement of treatments will be mediated by
the introduction of estimated glomerular filtration rate
(eGFR) reporting, as well as by the preservation of patient
records required of all the UK general practitioners [5].
Dialysis and transplantation provide alternative ways

of taking over the work of advanced renal disease pa-
tients. The most efficient form of therapy for advanced
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renal disease patients is a kidney transplant. However,
haemodialysis is the next best option. The efficiency of
haemodialysis treatment relies on a functional status of
vascular access (VA). According to the National Institute
for Health and Clinical Excellence Guidelines [6], VA
and its related problems represent the main factors that
determine a rise in the rate of incidence of the disease
among haemodialysis patients and, consequently, a rise
in the healthcare expenses. To ensure that the dialysis
therapy can be efficiently undertaken, all patients need a
fully developed fistula that is appropriate for the process
of cannulation. Arteriovenous fistula (AVF) is the most
efficient method, as it has a low risk of infection and
mortality, and can ensure long-term functional access
[7, 8]. Unfortunately, significant numbers of AVF fail to
develop sufficiently prior to their use for haemodialysis
due to either lack of vessel maturation or spontaneous
thrombosis [9].
It is likely that one of the most important determi-

nants of AVF maturation is the ability of the inflow
artery and the outflow vein to respond to the increased
blood flow that occurs upon anastomosis of the artery
and vein [10]. AVF maturation is the ability of the inflow
artery and the outflow vein to respond to the increased
blood flow that occurs upon anastomosis of the artery
and vein. A healthy response to the anastomosis is an
increase in blood flow and corresponding increase in
shear stress [11] which stimulates the endothelial cells to
release nitric oxide (NO) and other vasodilatory sub-
stances [12]. The main purpose of this review was to dis-
cuss the maturation of AVF and endothelial dysfunction
in an advance kidney disease.

Haemodialysis
Progressive and permanent renal failure is most fre-
quently treated with haemodialysis. RRT with haemo-
dialysis does not provide true replacement of renal
function. However, by removing waste solutes and excess
body water and restoring biochemical and acid-base
balance, haemodialysis has considerably improved the
morbidity and mortality of end-stage renal disease (ESRD)
patients. A suitable type of vascular access has to be
created to establish a connection between the circulation
system of the patient and the haemodialysis cycle, in order
to provide haemodialysis in ESRD patients.
Vascular access problems represent the main deter-

minant of morbidity among haemodialysis patients and
put a considerable degree of financial pressure on the
healthcare sector [13, 14]. Successful haemodialysis
depends on the provision of safe, efficient, and durable
vascular access. Establishing and maintaining effective
vascular access is a demanding process for both patients
and renal services. These demands are set to increase in
response to an RRT population that is becoming
increasingly dependent on haemodialysis, whilst also in-
creasing in population size, age, and co-morbidity.
Vascular access can be divided into three categories:
arteriovenous fistula, central venous catheter (CVC) and
arteriovenous graft (AVG).
Of these, CVCs are used temporarily to provide vascu-

lar access for haemodialysis whilst the patient awaits cre-
ation or maturation of an AVF or AVG or because no
suitable options for permanent vascular access are avail-
able [15]. AVF is considered to provide the best long-
term functional vascular access, with a reduced risk of
thrombosis or infection, and is the most cost-effective
[16]. There are logistical hurdles to this late presentation
to renal services, fitness for surgery, suitable peripheral
vascular anatomy, delays due to primary or secondary
access failure, and slow rates of AVF maturation.
Konner et al. [17] had also obtained a high success rate

(70–90%) of native AVF construction in their study on a
randomized sample of ESRD patients. Despite the fact
that it is not without its problems, the arteriovenous fis-
tula offers better quality access for dialysis as it has a
long-lasting primary patency rate, avoids the need for
other numerous procedures, and has the most reduced
rates of morbidity and mortality among all types of vas-
cular access [18].

Endothelial function
The endothelium is the largest organ in the body con-
sisting of endothelial cells lining every blood vessel.
Adults possess enough endothelial cells that cover a sur-
face area of approximately 1 to 7 m2, with a total weight
of around 1 kg and a total quantity of 1013–6078 indi-
vidual cells [19]. In healthy subjects, vascular endothe-
lium has many functions: it can identify hormonal
stimuli (vasoactive substances) as well as mechanical
stimuli (pressure and shear stress). Endothelial cells
regulate inflammation, cell proliferation, coagulation,
and vascular tone due to their output of a number of
compounded substances [20]. Endothelium produced
vasodilatory materials such as C-type natriuretic peptide,
various endothelium-derived hyperpolarising elements,
prostacyclin, and NO, whereas vasoconstrictor materials
are reactive oxygen species, thromboxane A2, angioten-
sin II, and endothelin-1 [21]. In addition, there are a
number of inflammatory regulators, such as nuclear
factor-kB, vascular cell adhesion molecule-1, E-selectin,
NO, and intercellular adhesion molecule-1 which play
an integral part of endothelial function.
Gresele et al. reported that fibrinogen, prostacyclin,

thromboxane A2, plasminogen activator inhibitor-1, NO,
tissue factor inhibitor, von Willebrand factor, and plas-
minogen activator act as modulators for haemostasis
[22]. Permeability, inflammation, coagulation, cell adhe-
siveness, and vascular tone are among the variety of
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local blood vessel operations modulated by endothelium.
In medium to large arteries, healthy endothelial cells
contribute to the prevention of atherosclerosis by inhi-
biting platelet activation, limiting the entry of cells and
lipids into the vessel wall, and maintaining a non-
proliferative and biochemically inactive intima [23].

Endothelial dysfunction
Endothelial dysfunction occurs when there is an imbal-
ance between the vasoconstricting and vasodilating
products (produced directly or indirectly by the endo-
thelium) [24]. Endothelial cell dysfunction can be caused
by multiple factors such as genetics, advance glycation
end products, hyperglycaemia, high blood cholesterol,
hypertension, obesity, diabetes, and smoking [25]. It is
associated with higher aggregation of platelets and
anticoagulant properties; decreased production of NO;
higher secretion of cytokines, chemokines, or adhesion
molecules; and increased reactive oxygen species pro-
duction from the endothelium [26]. Furthermore, indi-
viduals suffering from chronic kidney failure exhibit
endothelial cell dysfunction. There is also a link between
metabolic changes to nitric oxide synthase (NOS) and
chronic kidney disease [27, 28]. NOS is available to
endothelial cells in two types of isoform: inducible and
constitutive or iNOS and cNOS, respectively [29].
Physiological vascular dilation is significantly affected by
the constitutive isoform. In patients with advanced renal
disease, decreased NO production from cNOS has
been observed as a mechanism leading to impaired
endothelium-dependent vasodilation in uraemia [30].
Furthermore, Passauer et al.’s research found a correl-
ation between reduced NO production and reduced
endothelium-based vasodilation in dialysis patients
[31]. The major features of endothelial dysfunction
are recapped in Table 1.
Endothelial dysfunction is also associated with in-

creased oxidative stress and inflammatory changes that
play a role in the development and progression of
atherosclerosis in the early stages, while they increase
the vulnerability of fully developed plaques facilitating
their rupture [32]. There are many techniques used to
Table 1 Healthy and dysfunctional endothelium

Healthy endothelium E

Vasodilatory (↑NO, ↑PGI2) I

Decrease oxidative stress, ↓uric acid I

Anticoagulant (↓PAI-1, vWF, P-selectin) P

Rise in endothelial progenitor cells and decrease molecular markers
of damage (circulating endothelial cells, microparticles)

D
o

Anti-inflammatory biomarkers (↓sICAM, sVCAM, E-selectin, CRP,
TNF-alpha, IL-6, MCP-1)

P
I

CRP C-reactive protein, IL-6 interleukin-6, NO nitric oxide, PAI-1 plasminogen activat
sVCAM soluble vascular cell adhesion molecule, TNF-α tumour necrosis factor alpha,
assess endothelial function. These techniques can be
either invasive or non-invasive. In invasive techniques,
vasoactive agents are delivered via intra-arterial infusion,
whilst the response is measured with high-resolution
ultrasound or strain gauge plethysmography. In addition,
intravascular infusions of vasoactive stimulants can be
combined with intravascular ultrasound.
Non-invasive techniques includes ultrasound and

magnetic resonance imaging flow-mediated dilatation,
salbutamol-mediated endothelial function measured by
pulse wave analysis or pulse contour analysis, and per-
ipheral arterial tonometry [33, 34]. Ultrasound flow-
mediated dilatation of the brachial artery is the most
widely used in clinical research, and it is currently con-
sidered a standard for a non-invasive assessment of
conduit artery endothelial function [35].

Endothelium dysfunction and AVF maturation
Early fistula failure is usually due to thrombosis which
can be triggered by haematoma, by low flow rates result-
ing from low blood pressure, or by a hypercoagulable
state [36]. On the other hand, progressive neointimal
hyperplasia in the venous outflow system can lead to
stenosis, which can cause late thrombosis of haemodialy-
sis AVF [37, 38]. Arteriovenous fistula anastomoses need
swift proliferation of endothelial cells to restore the bar-
rier, permeability, and biochemical monitoring roles of
endothelial cells in managing vascular repair, local
thrombosis, neointimal hyperplasia, and inflammation
[39]. Because the migration and proliferation of endothe-
lial cells are restricted by uraemia, and because uraemia
causes abnormal vascular remodelling, neointimal hyper-
plasia can sometimes be found at the point of anasto-
mosis of VA [40, 41]. This results in primary access
failure and ineffective dialysis [42]. A recent study sug-
gested that microvascular endothelial function as mea-
sured using peripheral arterial tonometry may be useful
as a predictor of AVF maturation and function [10].
Patients who had impaired flow-mediated dilation (FMD)
with a median value of 5.0% (3–9) did not find any
difference between the patients with successful and/or un-
successful AVF [10]. The finding of impaired endothelial
ndothelial dysfunction

mpaired vasodilation (↓NO, ↓PGI2)

ncrease oxidative stress (↑ nitrotyrosine and uric acid)

rocoagulant (↑PAI-1, vWF, P-selectin)

ecrement in endothelial progenitor cells and increase molecular markers
f damage (circulating endothelial cells, microparticles)

ro-inflammatory biomarkers (↑sICAM, sVCAM, E-selectin, CRP, TNF-alpha,
L-6, MCP-1)

or inhibitor 1, PGI2 prostacyclin, sICAM soluble intercellular adhesion molecule,
vWF von Willebrand factor
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function in this CKD cohort is similar to what others have
shown using both venous occlusion plethysmography
techniques [43], and FMD [44]. Owens et al. [45]
determined FMD among 25 CKD patients prior to AVF
creation and found very similar values (5.8 ± 1.0%). Study
explored the correlation between baseline FMD and
subsequent change in the diameter of the artery and vein
at 3 months after AVF creation and found a positive
correlation.
Erdem et al. discovered that during haemodialysis,

turbulent flow, intraluminal pressure, and regular needle
insertion caused endothelial damage, which led to
haemostatic activation in AVF [46]. Wakefield et al.’s
study indicated that thrombus development and blood
clotting could be stimulated by higher levels of factor V,
plasminogen activator inhibitor-1, tissue factor, and von
Willebrand factor, as secreted by a dysfunctional venous
endothelium [47]. Furthermore, a dysfunctional venous
endothelium favours the interactions with circulating
tissue factor-bearing microparticles, further triggering
localized blood clotting activation [48].
Vascular stenosis of arteriovenous fistula is primarily

the result of neointimal hyperplasia [49, 50]. The
pathophysiology of neointimal hyperplasia consists of
the presence of extracellular matrix deposition and pro-
liferation, adherence, and migration of vascular smooth
muscle cell (VSMC), which represents abnormal healing.
Sung et al. [51] found that growth factors and cytokines
act as semi-regulators for the changes to the VSMC re-
sponse. Tumour necrosis factor-α stimulates the synthe-
sis of other pro-inflammatory cytokines and adhesion
molecules; it has a chemotactic activity for monocytes
and stimulates migration and proliferation of VSMC.
Fig. 1 Vascular remodelling responses
The shear stress levels revert back to baseline due to
these vascular reactions (Fig. 1). On the other hand, the
activation of endothelial cells and proliferation, release
of inflammatory and procoagulant substances, and alter-
ations to cellular shape are all events that have been
linked to reduction in shear stress and blood flow. This
manifests as raised levels of neointimal hyperplasia and
vascular constriction [52]. Furthermore, Dardik et al.
[53] has revealed that vascular response seems to be
significantly influenced by the exact type of shear stress.
For instance, matrix metalloproteinase up-regulation,
higher proliferation of cells, and a pro-inflammatory
environment can be caused by oscillatory shear stress
[54]. On the other hand, normal dilatation and
endothelial stability are the outcomes of laminar shear
stress [55].
Corpataux et al. [56] discovered that the fistula vein

instantly deals with huge increase in blood flow follow-
ing the creation of AVF. Additionally, there is an even-
tual thickening of the fistula vein wall and dilation of the
venous lumen. This allows the fistula vein to effectively
deliver sufficient blood for haemodialysis and be regu-
larly needled for dialysis circulation. The next most
significant hemodynamic factor that typically influence
an AV fistula is the circumferential or transmural pres-
sure. Transmural pressure is produced inside the blood
vessel, and previous studies [57, 58] have shown that in-
crease in transmural pressure lead to an activation of
smooth muscle cells, higher levels of extracellular matrix
elements, and raised production of cytokine. These path-
ways invariably lead to the thickening of blood vessel
wall, which result in the reduction of transmural pres-
sure which revert back to basal level.
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Vanholder et al. [59] and Cardinal et al. [60] indicated
that wound healing, migration, proliferation, viability,
and other fundamental endothelial cells biological pro-
cesses are restricted by the uraemic toxins found in the
plasma of individuals with ESRD. This is particularly
true at the site of haemodialysis vascular access. The
failure of these EC processes has played a crucial role in
vascular remodelling. According to Chitalia et al. [61],
vascular remodelling is negatively impacted by EC dys-
function that is caused by uraemia. The result of this is
vascular access failure and can be fatal to patients with
ESRD since it is crucial to achieve vascular access for
haemodialysis.
Certainly, endothelial cell function is also important,

but the most important factor in maturation of AVF
seems to be blood vessel selection and surgical tech-
nique. Blood vessel selection is one the most important
factors in the maturation of AVF. The inadequate vessels
used to construct AVFs have been identified as another
cause of AVF failure. Zadeh et al. [62] conducted a
cross-sectional study using a sample of 96 haemodialysis
patients and found an association between the vein
diameter and the success rate of fistula development. A
vein diameter of <2.5 mm is supposed to be considered
inadequate for formation of an AVF, particularly if mea-
surements remain unchanged following the use of tour-
niquet [63].

Conclusion
The efficiency of haemodialysis treatment relies on a func-
tional status of vascular access. AVF non-maturation is
most commonly characterized by a juxta-anastomotic
stenosis, a histological level such as aggressive neointimal
hyperplasia at the juxta-anastomosis, and an absence of
outward vascular remodelling. Currently, we have rea-
sonable understanding of the mechanisms, pathways,
pathology, and the pathogenesis of venous neointimal
hyperplasia, and vascular stenosis leads to AVF non-
maturation. The combination of advances in cellular and
molecular pathobiology, biomaterials, and drug delivery
techniques has resulted in many innovative therapies
for neointimal hyperplasia. There is a need to identify
the therapies that are best suited for clinical use in
AVF dysfunction.

Abbreviations
AVF: Arteriovenous fistula; AVG: Arteriovenous graft; CKD: Chronic kidney
disease; CVC: Central venous catheter; eGFR: Estimated glomerular filtration
rate; ESRD: End-stage renal disease; FMD: Flow-mediated dilation; NO: Nitric
oxide; NOS: Nitric oxide synthase; RRT: Renal replacement therapy;
VA: Vascular access; VSMC: Vascular smooth muscle cell

Acknowledgements
Not applicable.

Funding
No funding was obtained.
Availability of data and materials
Not applicable.

Authors’ contributions
MAS conceived the study and supervised the study. MAS and SA drafted the
manuscript while DS and TC revised and reviewed the whole manuscript.
All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable as a literature review.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Health Sciences, Queen Margaret University, Edinburgh, UK.
2Diabetes and Endocrinology, James Cook University Hospital,
Middlesbrough, UK. 3Professional Faculties, University of Calgary, Calgary,
Canada.

Received: 13 March 2017 Accepted: 25 July 2017

References
1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al.

Global prevalence of chronic kidney disease—a systematic review and
meta-analysis. PLoS One. 2016;11(7):e0158765.

2. Gilga J, Caskeyabc F, Fogarty D. UK Renal Registry 18th Annual Report:
chapter 1 UK renal replacement therapy incidence in 2014: national and
centre-specific analyses. Nephron. 2016;132(1):9–40.

3. Drey N, Roderick P, Mullee M, Rogerson M. A population-based study of the
incidence and outcomes of diagnosed chronic kidney disease. Am J Kidney Dis.
2003;42:677–84.

4. John R, Webb M, Young A, Stevens PE. Unreferred chronic kidney disease:
a longitudinal study. Am J Kidney Dis. 2004;43:825–35.

5. Quality and Outcomes Framework. 2015. [Online]. Available from:
http://www.qof.ic.nhs.uk. [Accessed 22 Dec 2016].

6. National Institute for Health and Care Excellence (NICE). Chronic kidney
disease in adults: assessment and management. Clinical guideline [CG182].
London; 2014.

7. Lyem H. Early follow-up results of arteriovenous fistulae created for
haemodialysis. Vasc Health Risk Manag. 2011;7:321–5.

8. Dixon BS, Novak L, Fangman J. Haemodialysis vascular access survival:
upper-arm native arteriovenous fistula. Am J Kidney Dis. 2002;39:92–101.

9. Asif A, Cherla G, Merrill D, Cipleu CD, Briones P, Pennell P. Conversion of
tunnelled haemodialysis catheter con-signed patients to arteriovenous
fistula. Kidney Int. 2005;67:2399–407.

10. MacRae JM, Ahmed S, Hemmelgarn B, Sun Y, Martin BJ, Roifman I, et al.
Role of vascular function in predicting arteriovenous fistula outcomes: an
observational pilot study. Can J Kidney Health Dis. 2015;2:19.

11. Robbin ML, Chamberlain NE, Lockhart ME, Gallichio MH, Young CJ, Deierhoi MH,
et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology.
2002;225(1):59–64.

12. Budu-Grajdeanu P, Schugart RC, Friedman A, Valentine C, Agarwal AK, Rovin BH.
A mathematical model of venous neointimal hyperplasia formation.
Theor Biol Med Model. 2008;5:2–11.

13. USRDS (US Renal Data System). Annual data report: atlas of chronic kidney
disease and end-stage renal disease in the United States. Bethesda: National
Institutes of Health, National Institute of Diabetes and Digestive and Kidney
Diseases; 2011.

14. MacNeill SJ, Casula A, Shaw C, Castledine C. UK Renal Registry 18th Annual
Report: chapter 2 UK renal replacement therapy prevalence in 2014: national
and centre-specific analyses. Nephron. 2016;132(1):41–68.

15. Bourquelot P. Vascular access for haemodialysis. Nephrol Ther. 2009;5(3):239–438.

http://www.qof.ic.nhs.uk


Siddiqui et al. Renal Replacement Therapy  (2017) 3:42 Page 6 of 6
16. Manns B, Tonelli M, Yilmaz S, Lee H, Laupland K, Klarenbach S, et al.
Establishment and maintenance of vascular access in incident haemodialysis
patients: a prospective cost analysis. J Am Soc Nephrol. 2005;16:201–9.

17. Konner K, Nonnast DB, Ritz E. The arteriovenous fistula. J Am Soc Nephrol.
2003;14:1669–80.

18. Anel RL, Yevzlin AS, Ivanovich P. Vascular access and patient outcomes in
haemodialysis: questions answered in recent literature. Art if Organs.
2003;27:237.

19. Augustin HG, Kozian DH, Johnson RC. Differentiation of endothelial cells:
analysis of the constitutive and activated endothelial cell phenotypes.
BioEssays. 1994;16(12):901–6.

20. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on
angiogenesis, vascular remodelling, and wound healing. Int J Vasc Med.
2012:01–30.

21. Schiffrin EL. A critical review of the role of endothelial factors in the
pathogenesis of hypertension. J Cardiovasc Pharmacol. 2001;38(2):S3–6.

22. Gresele P, Momi S, Migliacci R. Endothelium, venous thromboembolism and
ischaemic cardiovascular events. Thromb Haemost. 2010;103(1):56–61.

23. Antonov AS, Munn DH, Kolodgie FD, Virmani R, Gerrity RG. Aortic endothelial
cells regulate proliferation of human monocytes in vitro via a mechanism
synergistic with macrophage colony-stimulating factor. Convergence at the
cyclin E/p27kip1 regulatory checkpoint. J Clin Invest. 1997;99(12):2867–76.

24. Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, et al.
Endothelial function and dysfunction. Part I: methodological issues for
assessment in the different vascular beds: a statement by the Working
Group on Endothelin and Endothelial Factors of the European Society of
Hypertension. J Hypertens. 2005;23(1):7–17.

25. Goligorsky MS. Endothelial cell dysfunction: can't live with it, how to live
without it. Am J Physiol Renal Physiol. 2005;288(5):871–80.

26. Al-Isa AN, Thalib L, Akanji AO. Circulating markers of inflammation and
endothelial dysfunction in Arab adolescent subjects: reference ranges and
associations with age, gender, body mass and insulin sensitivity.
Atherosclerosis. 2010;208(2):543–9.

27. Dandona P, Chaudhuri A, Aljada A. Endothelial dysfunction and hypertension
in diabetes mellitus. Med Clin North Am. 2004;88:911–31. x-xi

28. Yu Y, Lyons TJ. A lethal tetrad in diabetes: hyperglycemia, dyslipidemia,
oxidative stress, and endothelial dysfunction. Am J Med Sci. 2005;330:227–32.

29. Kharbanda RK, Deanfield JE. Functions of the healthy endothelium.
Coron Artery Dis. 2001;12(6):485–91.

30. Santoro D, Bellinghieri G, Conti G, Pazzano D, Satta E, Costantino G, et al.
Endothelial dysfunction in chronic renal failure. J Ren Nutr.
2010;20(5 Suppl):S103–S8.

31. Passauer J, Pistrosch F, Büssemaker E, Lässig G, Herbrig K, Gross P. Reduced
agonist-induced endothelium-dependent vasodilation in uremia is
attributable to an impairment of vascular nitric oxide. J Am Soc Nephrol.
2005;16:959–65.

32. Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical
cardiologist. Circulation. 2002;105:546–9.

33. Al-Qaisi M, Kharbanda RK, Mittal TK, Donald AE. Measurement of endothelial
function and its clinical utility for cardiovascular risk. Vasc Health Risk
Manag. 2008;4(3):647–52.

34. Hansell J, Henareh L, Agewall S, Norman M. Non-invasive assessment of
endothelial function—relation between vasodilatory responses in skin
microcirculation and brachial artery. Clin Physiol Funct Imaging.
2004;24(6):317–22.

35. Higashi Y. Assessment of endothelial function. History, methodological
aspects, and clinical perspectives. Int Heart J. 2015;56(2):125–34.
doi:10.1536/ihj.14-385.

36. Konner K. Primary vascular access in diabetic patients: an audit. Nephrol Dial
Transplant. 2000;15(9):1317–25.

37. De Marchi S, Falleti E, Giacomello R, Stel G, Cecchin E, Sepiacci G, et al.
Risk factors for vascular disease and arteriovenous fistula dysfunction in
haemodialysis patients. J Am Soc Nephrol. 1996;7(8):1169–77.

38. Mysliwiec M. Vascular access thrombosis—what are the possibilities of
intervention? Nephrol Dial Transplant. 1997;12(5):876–8.

39. Cowan DB, Langille BL. Cellular and molecular biology of vascular
remodeling. Curr Opin Lipidol. 1996;7:94–100.

40. García-Jérez A, Luengo A, Carracedo J, Ramírez-Chamond R, Rodriguez-Puyol D,
Rodriguez-Puyol M, et al. Effect of uraemia on endothelial cell damage is
mediated by the integrin linked kinase pathway. J Physiol. 2015;593(3):601–18.
41. Monroy MA, Fang J, Li S, Ferrer L, Birkenbach MP, Lee IJ, et al. Chronic
kidney disease alters vascular smooth muscle cell phenotype. Front Biosci
(Landmark edition). 2015;20:784–95.

42. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Haemodialysis vascular access
dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol.
2006;17:1112–7.

43. London GM, Pannier B, Agharazii M, Guerin AP, Verbeke FH, Marchais SJ.
Forearm reactive hyperemia and mortality in end-stage renal disease.
Kidney Int. 2004;65(2):700–4.

44. Verbeke FH, Pannier B, Guérin AP, Boutouyrie P, Laurent S, London GM.
Flow-mediated vasodilation in end-stage renal disease. Clin J Am Soc Nephrol.
2011;6(8):2009–15.

45. Owens CD, Wake N, Kim JM, Hentschel D, Conte MS, Schanzer A.
Endothelial function predicts positive arterial-venous fistula remodeling in
subjects with stage IV and V chronic kidney disease. J Vasc Access.
2010;11(4):329–34.

46. Erdem Y, Haznedaroglu IC, Celik I, Yalcin AU, Yasavul U, Turgan C, et al.
Coagulation, fibrinolysis and fibrinolysis inhibitors in haemodialysis
patients: contribution of arteriovenous fistula. Nephrol Dial Transplant.
1996;11(7):1299–305.

47. Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and
resolution. Arterioscler Thromb Vasc Biol. 2008;28:387–91.

48. Del Conde I, Lopez J. Classification of venous thromboembolism (VTE).
J Thromb Haemost. 2005;3:2573–5.

49. Rekhter M, Nicholls S, Ferguson M, Gordon D. Cell proliferation in human
arteriovenous fistulas used for hemodialysis. Arterioscler Thromb.
1993;13:609–17.

50. Kim YO, Choi YJ, Kim JI, Kim YS, Kim BS, Park CW, et al. The impact of
intima-media thickness of radial artery on early failure of radiocephalic
arteriovenous fistula in haemodialysis patients. J Korean Med Sci.
2006;21(2):284–9.

51. Sung SA, Ko GJ, Jo SK, Cho WY, Kim HK, Lee SY. Interleukin-10 and tumor
necrosis factor-alpha polymorphisms in vascular access failure in patients on
hemodialysis: preliminary data in Korea. J Korean Med Sci. 2008;23(1):89–93.

52. Meyerson SL, Skelly CL, Curi MA, Shakur UM, Vosicky JE, Glagov S, et al. The
effects of extremely low shear stress on cellular proliferation and neointimal
thickening in the failing bypass graft. J Vasc Surg. 2001;34:90–7.

53. Dardik A, Chen L, Frattini J, Asada H, Aziz F, Kudo FA, et al. Differential
effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg.
2005;41:869–680.

54. Gambillara V, Montorzi G, Haziza-Pigeon C, Stergiopulos N, Silacci P. Arterial
wall response to ex vivo exposure to oscillatory shear stress. J Vasc Res.
2005;42:535–44.

55. Honda HM, Hsiai T, Wortham CM, Chen M, Lin H, Navab M, et al. A complex
flow pattern of low shear stress and flow reversal promotes monocyte
binding to endothelial cells. Atherosclerosis. 2001;158:385–90.

56. Corpataux JM, Haesler E, Silacci P, Ris HB, Hayoz D. Low pressure
environment and remodelling of the forearm vein in Brescia-Cimino
haemodialysis access. Nephrol Dial Transplant. 2002;17:1057–62.

57. Lehoux S, Castier Y, Tedgui A. Molecular mechanisms of the vascular
responses to haemodynamic forces. J Intern Med. 2006;259:381–92.

58. Hayashi K, Mori K, Miyazaki H. Biomechanical response of femoral vein to
chronic elevation of blood pressure in rabbits. Am J Physiol Heart Circ Physiol.
2003;284:511–8.

59. Vanholder R, Argilés A, Baurmeister U, Brunet P, Clark W, Cohen G, et al.
Uremic toxicity: present state of the art. Int J Artif Organs. 2001;24:695–725.

60. Cardinal H, Raymond MA, Hébert MJ, Madore F. Uraemic plasma decreases
the expression of ABCA1, ABCG1 and cell-cycle genes in human coronary
arterial endothelial cells. Nephrol Dial Transplant. 2007;22:409–16.

61. Chitalia VC, Murikipudi S, Indolfi L, Rabadi L, Valdez R, Franses JW, et al.
Matrix-embedded endothelial cells are protected from the uremic milieu.
Nephrol Dial Transplant. 2011;26(12):3858–65.

62. Zadeh MK, Gholipour F, Naderpour Z, Porfakharan M. Relationship between
vessel diameter and time to maturation of arteriovenous fistula for
haemodialysis access. Int J Nephrol. 2012;3;1–3.

63. Bashar K, Clarke-Moloney M, Burke PE, Kavanagh EG, Walsh SR. The role of
venous diameter in predicting arteriovenous fistula maturation: when not to
expect an AVF to mature according to pre-operative vein diameter
measurements? A best evidence topic. Int J Surg. 2015;15:95–9.

http://dx.doi.org/10.1536/ihj.14-385

	Outline placeholder
	Abstract

	Background
	Haemodialysis
	Endothelial function
	Endothelial dysfunction
	Endothelium dysfunction and AVF maturation

	Conclusion
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

