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Cardiovascular disease, mortality, and
magnesium in chronic kidney disease:
growing interest in magnesium-related
interventions
Ryota Ikee

Abstract

Magnesium (Mg) is an essential element that plays pivotal roles in a number of biological processes in the human
body. Hypomagnesemia is involved in the pathophysiology of hypertension, vascular calcification, and metabolic
derangements including diabetes mellitus and dyslipidemia, which are all risk factors for cardiovascular disease, the
leading cause of mortality and morbidity in patients with chronic kidney disease (CKD). Hypomagnesemia is also
associated with the development and progression of CKD. As CKD advances, renal Mg excretion decreases and
hypermagnesemia emerges in end-stage renal disease (ESRD). In addition, dialysates with high Mg concentrations,
which were used in the early era of dialysis therapy, increased the risk of hypermagnesemia, and thus, the dialysate
Mg composition has since been reduced. Accordingly, dialysis patients in the modern era commonly have
normomagnesemia or even hypomagnesemia. The relationships between hypomagnesemia and cardiovascular
disease and mortality have been increasingly reported in observational studies in CKD/ESRD. However, these
relationships may be attenuated by a patient’s race or region. Although dialysates with higher Mg concentrations or
Mg-containing phosphate binders appear to be promising in this setting, only a few interventional studies
have examined the effects of Mg supplementation on cardiovascular lesions. Furthermore, the effects of Mg
supplementation on mortality have not yet been investigated as a primary end-point in randomized controlled trials.
Further studies are required in order to establish the efficacy and safety of Mg in CKD patients.
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Background
Magnesium (Mg), the fourth most abundant cation in the
human body, is a co-factor in more than 300 enzyme sys-
tems that regulate a number of biological processes, such
as protein synthesis, muscle and nerve transmission,
neuromuscular conduction, and signal transduction. It is
also involved in the cardiovascular system via the regula-
tion of vascular tone, heart rhythm, endothelial function,
and platelet-activated thrombosis [1–5]. An insufficient
Mg intake and hypomagnesemia are associated with in-
flammation, oxidative stress, and metabolic derangements,
such as diabetes mellitus (DM) and dyslipidemia [5–8], all

of which contribute to the development of cardiovascular
disease. It is well known that cardiovascular mortality is
10–30-fold higher in dialysis patients than in the general
population [9]. Recent clinical studies reported the nega-
tive impact of hypomagnesemia in patients with chronic
kidney disease (CKD). The potentially protective role of
Mg in this population has been attracting increasing
attention. We herein review clinical studies that examined
the effects of serum Mg levels on cardiovascular disease
and mortality and discuss Mg-related interventions in
CKD patients.

Mg and the kidney
The human body stores approximately 25 g of Mg:
66% of this is in bone, 33% in intracellular spaces,
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and 1% in extracellular spaces [5, 10]. Serum Mg
levels in healthy subjects are maintained within a nar-
row range primarily by the balance between intestinal
absorption and renal excretion. In the kidney, most
Mg filtered by the glomeruli is immediately reab-
sorbed and only 3–5% is excreted in the urine [5].
Reabsorption occurs in the ascending limb of Henle’s
loop mainly via paracellular transport, and transcellu-
lar transport in the distal convoluted segment
contributes to maintaining the regulation of Mg.
Renal tubular reabsorption of Mg is increased by
extracellular volume contraction, hypomagnesemia,
and high parathyroid hormone (PTH) levels [10].
Several observational studies identified hypomagnes-

emia as a predictor of a decline in renal function [11–14].
Tin et al. evaluated the risk of renal function loss in
association with serum Mg levels in 13,226 patients
during a median follow-up period of 21 years [13]. In
a multivariate analysis adjusted for demographics,
baseline renal function, nutrition markers, and comor-
bidities, patients with low serum Mg levels ≤ 1.70 mg/
dL (0.70 mmol/L) showed a 58% higher hazard ratio
(HR) for incident CKD and a 139% higher HR for
end-stage renal disease (ESRD) than those with the
highest quartile of serum Mg levels (2.19–2.80 mg/dL
[0.90–1.15 mmol/L]). Sakaguchi et al. demonstrated a
significant interaction between serum Mg and P levels
on CKD progression [14]. Among 311 non-diabetic
CKD patients, those in the lower Mg and higher P
group were at a 2.07-fold risk for incident ESRD
compared with those in the higher Mg and higher P
group. The mechanisms contributing to the relationship
between hypomagnesemia and renal function loss have
not yet been elucidated in detail, but endothelial dysfunc-
tion, inflammation, vascular calcification, DM, insulin re-
sistance, hyperaldosteronism, and pro-thrombotic effects
may be involved [13, 15]. Lower dietary Mg intake may
also induce renal function loss [16].
Glomerular filtration of Mg decreases as CKD pro-

gresses, whereas tubular reabsorption of Mg is impaired
due to tubulointerstitial injury, thus causing an increase
in fractional Mg excretion [17, 18]. However, the quanti-
tative excretion of Mg tends to decrease regardless of
the compensatory increase in fractional Mg excretion if
glomerular filtration rate (GFR) falls to < 30 mL/min/
1.73 m2 [19], particularly < 10–15 mL/min/1.73 m2 [20,
21]. Overt hypermagnesemia emerges when GFR falls to
< 10 mL/min/1.73 m2 [20]. Previous studies reported an
inverse correlation between renal function and serum
Mg levels in non-diabetic CKD [11, 22]. However, this
correlation was not observed in diabetic CKD [11, 22],
which would be attributable to an insulin-induced in-
crease in renal Mg excretion leading to hypomagnesemia
in diabetic patients [5, 23].

Mg and dialysis therapy
Dialysate Mg concentrations are one of the main factors
influencing the Mg balance and serum Mg levels in
dialysis patients. Mg easily crosses the hemodialyzer
membrane and peritoneal membrane, and the amount of
Mg elimination depends on its concentration gradient
between serum and dialysate. A small amount of Mg is
also removed by ultrafiltration. Actually, hypertonic di-
alysate use has been associated with hypomagnesemia in
patients treated with peritoneal dialysis (PD) [24].
Dialysate Mg concentrations have changed over time.
Until the 1980s, hemodialysis (HD) dialysate with a Mg
concentration of 0.75 mmol/L was commonly used,
while that with a lower concentration of 0.5 mmol/L is
now widely used. In PD, dialysate Mg concentrations
have changed from 0.75 to 0.25 mmol/L. These changes
may be attributable to concerns regarding the suggestion
by some studies of the adverse influence of hypermagne-
semia on renal osteodystrophy [25], uremic pruritus
[26], and visceral calcification [27] and the introduction
of Mg-containing phosphate binders. Serum Mg levels in
dialysis patients have been decreased by the changes of di-
alysate Mg concentrations, and hypomagnesemia rather
than hypermagnesemia is now becoming an issue of inter-
est due to its potent harmful influence. Hypomagnesemia
is more common in PD patients than in HD patients be-
cause of lower dialysate Mg concentrations as well as the
continuous nature of PD therapy.
Dietary Mg intake is another factor that influences

serum Mg levels [28]. Dietary Mg is mainly absorbed in
the small intestine. The active form of vitamin D has
been shown to stimulate intestinal Mg absorption [5],
which may partly explain depressed Mg absorption
reported in CKD patients with a deficiency in active vita-
min D [29]. Schmulen et al. previously showed that the
administration of vitamin D receptor activators enhanced
intestinal Mg absorption in CKD patients [30]. Mg-rich
foods include green vegetables, peas, beans, nuts, seeds,
and some fish [28], which are often restricted to avoid
hyperkalemia and hyperphosphatemia. Therefore, dietary
Mg intake may be insufficient, particularly in dialysis pa-
tients, as described by Luis et al. [31]. Serum Mg levels
may be used as nutritional markers in dialysis patients be-
cause they correlate with serum albumin levels [24, 32–
36], body mass index [24, 32], normalized protein cata-
bolic rate [32, 34, 36], muscle mass [32] and strength [37],
and subjective global assessment scores [32]. Of interest,
the use of a low Mg PD dialysate induced a decrease in
serum albumin levels [38].
In order to treat the complications that occur during

long-term CKD, a number of drugs, such as diuretics, anti-
biotics, chemotherapeutic agents, β-blockers, and proto-
n-pump inhibitors, are often used and may induce
hypomagnesemia [5].
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Observational studies on hypomagnesemia,
cardiovascular disease, and mortality
In CKD patients, cardiovascular calcification begins dur-
ing the pre-dialysis period and relentlessly progresses after
the induction of dialysis therapy [39, 40]. In addition to
hypertension, inflammation, an increase in serum Ca/P
levels, the high prevalence of DM and warfarin use, and
chronic micro-inflammation [41], hypomagnesemia may
accelerate the progression of vascular calcification.
Recently, the mechanisms of inhibition of vascular calcifi-
cation by Mg have been widely investigated in experimen-
tal studies. Currently, there are two leading hypotheses
[42]. First, Mg may bind P and delay Ca-P crystal growth
in the circulation, thereby passively interfere with Ca-P
deposition in the vessel wall. Elevated serum Mg interferes
with amorphous Ca-P maturation into hydroxyapatite
[43]. Calciprotein particle (CPP) is a recent issue of inter-
est. Ca and P combine with fetuin-A to form amorphous
Ca-P containing primary CPPs. Primary CPP is considered
to inhibit crystal growth and aggregation [44], but it
undergo spontaneous maturation and develop crystalline
structures to form secondary CPP. Aghagolzadeh et al.
have recently reported that secondary CPP has a potential
to induce vascular calcification [45]. In addition, CPP mat-
uration time (T50) has been reported as an independent
predictor of mortality in HD patients [46] and renal trans-
plant recipients [47]. It is notable that Mg suppresses CPP
maturation [48]. Second, Mg may regulate transdifferen-
tiation of vascular smooth muscle cells (VSMC) toward
an osteogenic phenotype by active cellular modulation of
factors associated with calcification. It has been reported
that Mg suppresses expression of osteogenic transcription
factors (bone morphogenetic protein [BMP]-2, runt-
related transcription factor 2, Msh homeobox 2, SRY-box
9), bone proteins, and genes associated with matrix
mineralization (osteocalcin, alkaline phosphatase) [42]. In
addition, Mg prevents the loss of calcification inhibitors
(BMP-7, matrix Gla protein, osteopontin) that protect
against osteogenic conversion [42]. Montes de Oca et al.
reported that Mg inhibited Wnt/β-catenin signaling path-
way and reversed osteogenic transformation of VSMC
[49]. Mg transport through the cell membrane mediated
by transient receptor potential melastatin 7 (TRPM7) is
important in VSMC calcification [49–51]. Previous studies
have suggested that P uptake through phosphate
transporter-1 (Pit-1) is also essential in calcification [52].
Sonou et al. reported that Mg supplementation decreased
Pit-1 protein expression in aortic rings incubated in high-
phosphate medium [51].
PTH has been suggested to be involved in vascular cal-

cification [53, 54]. Serum Mg levels showed an inde-
pendent inverse relationship with intact PTH levels in
pre-dialysis ESRD patients [55] and dialysis patients [56,
57]. Interventional studies showed that dialysate Mg

concentration and Mg-containing phosphate binders af-
fected intact PTH levels [58, 59]. Mg suppresses PTH
secretion via the activation of Ca sensing receptor, al-
though Mg is 2- to 3-fold less potent than Ca. Suppres-
sion of PTH secretion induced by Mg supplementation
may have a favorable effect on vascular calcification to
some extent.
Changes in serum Mg levels during HD sessions may

acutely influence cardiovascular hemodynamics and
electrophysiological functioning. Kyriazis et al. investi-
gated the influence of intradialytic changes in serum Mg
levels on blood pressure [60]. Decreased serum Mg
levels induced by a low Mg dialysate enhanced suscepti-
bility to intradialytic hypotension, possibly because of
impaired cardiac contractility. Limited information is
currently available on the effects of Mg on arrhythmia,
but Alabd et al. reported that the post-dialysis QTc
interval duration inversely correlated with a decrease in
serum Mg levels during the HD session [61].
Table 1 shows observational studies that examined the

relationship between serum Mg levels and cardiovascular
calcification/atherosclerosis in CKD/ESRD patients [32,
62–68]. Most of these studies indicated an association
between hypomagnesemia and cardiovascular lesions.
Sakaguchi et al. performed a cross-sectional study to
evaluate coronary artery calcification using multi-
detector-row computed tomography in 109 pre-dialysis
CKD patients with DM [67]. A multivariate analysis
showed that serum Mg levels were inversely associated
with the density of coronary artery calcification, after ad-
justments for demographics, renal function, and indices
related to nutrition, inflammation, and mineral and bone
disorders. This relationship was more pronounced in pa-
tients with serum phosphate levels ≥ 3.4 mg/dL
(1.40 mmol/L). Liu et al. reported an independent rela-
tionship between hypomagnesemia and carotid intima-
media thickness (IMT) in 98 HD patients [32].
The relationship between serum Mg levels and mortality

in CKD patients is shown in Table 2 [12, 33–35, 69–72].
Van Laecke et al. found that adjusted HR for all-cause
mortality decreased by 7% with a 0.1-mg/dL (0.04 mmol/
L) increase in serum Mg levels in non-dialysis CKD pa-
tients [12]. In the study by Cai et al. which included 253
incident PD patients, all-cause and cardiovascular mortal-
ities were significantly lower in the high-serum-Mg group
than in the low-Mg group [35]. Yang et al. examined
10,692 incident PD patients in the USA and found a sig-
nificant association between hypomagnesemia and
hospitalization [72]. However, hypomagnesemia was not
an independent predictor of all-cause death after adjust-
ments for laboratory variables. In HD patients, Ishimura
et al. were the first to report an independent relationship
between hypomagnesemia and all-cause mortality [73].
This study included 515 patients, and the mortality risk
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decreased by 52% with a 1-mg/dL increase in serum Mg
levels. Recently, similar findings have been increasingly re-
ported in large-scale studies [33, 34, 69–71]. Sakaguchi et
al. examined this relationship using the Japanese National
Registry data [69]. Although the follow-up period was lim-
ited to 1 year, the lowest Mg sextile group (serum Mg
levels < 2.3 mg/dL [0.95 mmol/L]) showed the highest all-
cause and non-cardiovascular mortality risks, whereas the
second highest Mg sextile (2.8–3.1 mg/dL [1.15–
1.28 mmol/L]) showed the lowest mortality risk. It was
notable that the second highest all-cause mortality risk
and highest cardiovascular mortality risk were found in
the highest Mg sextile (≥ 3.1 mg/dL [1.28 mmol/L]). Con-
sistent with these findings, a restricted cubic spline ana-
lysis showed that the shape of the fully adjusted
relationship between serum Mg levels and all-cause mor-
tality was J shaped. Kurita et al. also employed a restricted
cubic spline analysis in 2165 Japanese patients and found
a similar curve for the relationship between serum Mg
levels and all-cause mortality [70]. In Europe, de Roji van
Zuijdewijn et al. demonstrated that lower serum Mg levels
were associated with a high risk of all-cause and cardio-
vascular death as well as sudden death [71]. In these three
studies [69–71], the relationship between hypomagnes-
emia and the mortality risk remained significant after the
full adjustments. However, the findings from the USA [33,
34] were different. In Lacson’s study [33], a linear decline
was observed in the risk of all-cause death adjusted for
case-mix variables (see Table 2) from the lowest to the
highest serum Mg category, with the best survival in the
category with the highest serum Mg levels (> 3.04 mg/dL
[1.25 mmol/L]). However, the relationship between hypo-
magnesemia and mortality was not significant after add-
itional adjustments for laboratory variables. Similarly, Li et

al. reported that time-varying serum Mg levels did not
predict the death in incident HD patients after adjustment
for laboratory variables [34].
Thus, a relationship exists between hypomagnesemia

and mortality, even after full adjustment for labora-
tory variables in patients from Asia and Europe [35,
69–71], but not in those from the USA [33, 34, 72].
Based on these results, it seems that patient’s race or
region may be involved in susceptibility to the harm-
ful effects of hypomagnesemia. There may be another
opinion that in the studies from the USA with the
short dialysis duration (Table 2), the prognostic
impact of hypomagnesemia might be confounded or
diluted by residual renal function. Residual renal
function is considered to be beneficial for the progno-
sis and has a negative impact on Mg balance even in
HD patients. The median of HD duration in Lacson’s
study [33] was comparable to that in de Roji van
Zuijdewijn’s study [71]. Both Cai’s [35] and Yang’s
study [72] included incident PD patients. However,
hypomagnesemia was an independent predictor of
mortality only in Cai’s (from China) and de Roji van
Zuijdewijn’s study (from Europe).

Mg-related interventions in CKD/ESRD patients
There are two methods to increase serum Mg levels: in-
creasing dialysate Mg concentrations and Mg supple-
mentation. However, evidence from interventional
studies to prove the favorable effects of Mg on cardio-
vascular disease and mortality is limited, which is not in
proportion to the increasing interest in Mg. These inter-
ventions should be employed with careful monitoring of
serum Mg levels to avoid hypermagnesemia.

Table 1 Observational studies examining the relationship between serum Mg levels and cardiovascular calcification/atherosclerosis

Authors (year) Subjects Study design Dialysate Mg
(mmol/L)

Outcome Adverse effects of
hypomagnesemia

Meema et al.
(1987) [62]

44, PD Prospective follow-up for an
average of 27 months

0.75 Progression and regression of artery calcification
evaluated by plain X-ray

Yes

Tzanakis et al.
(1997) [63]

56, HD Cross-sectional analysis 0.81 Mitral annular calcification detected by
echocardiography

Yes

Tamashiro et al.
(2001) [64]

24, HD Prospective follow-up for an
average of 17 months

0.5 Changes in coronary artery calcification scores
evaluated by CT

No

Tzanakis et al.
(2004) [65]

93, HD Cross-sectional analysis 0.48 Carotid intima-media thickness evaluated by
ultrasound

Yes

Ishimura et al.
(2007) [66]

390, HD, non-
DM

Cross-sectional analysis 0.5 Arterial calcification of the hands detected by
plain X-ray

Yes

Liu et al. (2013)
[32]

98, HD Cross-sectional analysis 0.5 Carotid intima-media thickness evaluated by
ultrasound

Yes

Sakaguchi et al.
(2016) [67]

109, pre-dialysis
CKD, DM

Cross-sectional analysis – Density of coronary artery calcification evaluated
by CT using Agatston scores

Yes

Molnar et al.
(2017) [68]

80, PD Cross-sectional analysis 0.25 Abdominal aortic calcification scores on lateral
lumbar spine X-ray

Yes

Abbreviations: CKD chronic kidney disease, CT computed tomography, DM diabetes mellitus, HD hemodialysis, PD peritoneal dialysis
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Dialysates with higher Mg concentrations
Dialysates with higher Mg concentrations are feasible
and effective for increasing serum Mg levels. In Nilsson’s
study including 22 HD patients who had been treated
with 0.75 mmol/L-Mg dialysate, 12 were assigned to
0.2 mmol/L dialysate and 10 continued to use
0.75 mmol/L dialysate [58]. Four months later, the
former patients showed a significant decrease in serum

Mg levels from 2.71 ± 0.55 mg/dL (1.11 ± 0.23 mmol/L)
to 2.26 ± 0.54 mg/dL (0.93 ± 0.22 mmol/L, P < 0.01),
whereas the latter did not. Similar findings have been
also reported in PD by Ejaz et al. [38]. None of the 33
patients had hypomagnesemia (defined as < 1.52 mg/dL
[0.625 mmol/L]) with the use of 0.75 mmol/L-Mg dialys-
ate. After the change to 0.25 mmol/L Mg-dialysate, 21
patients (63.6%) developed hypomagnesemia. This

Table 2 Observational studies examining the relationship between serum Mg levels and mortality

Authors (year) Subjects Dialysis
duration

Dialysate
Mg
(mmol/L)

Follow-up
period

Adjusted HR Adjustments

Pre-dialysis CKD

Van
Laecke
et al.
(2013)
[12]

1650 – – Median
5.1 years

All-cause mortality 0.930 per 0.1-mg/dL
increase in serum Mg levels
All-cause mortality 1.613 in the low Mg
group (< 1.8 mg/dL) vs. the high Mg
group (> 2.2 mg/dL)

Age, sex, DM, hypertension, obesity,
smoking, eGFR, diuretics, RAAS blockade,
UA, Na, K, P, CRP

Dialysis

Sakaguchi
et al.
(2014)
[69]

142,555,
HD

Median
7 years

0.5 1 year All-cause mortality 1.28, cardiovascular
mortality 1.24, non-cardiovascular
mortality 1.32 in the lowest Mg sextile
(< 2.3 mg/dL) vs. the second highest
sextile (≥ 2.8, < 3.1 mg/dL)

Age, sex, HD duration, weekly HD time,
BMI, DM, CVD, parathyroidectomy, hip
fracture, BUN, albumin, ALP, hemoglobin,
Ca, P, CRP, iPTH, VDRAs, PBs, cinacalcet

Kurita
et al.
(2015)
[70]

2165,
HD

Median
8.3 years

0.5 3 years All-cause mortality 1.734 in the lowest
Mg quintile (≤ 2.3 mg/dL) vs. the
middle quintile (> 2.5, ≤ 2.7 mg/dL)
All-cause mortality 1.649 in the second
lowest quintile (> 2.3, ≤ 2.5 mg/dL) vs.
the middle quintile

Age, sex, HD duration, Kt/V, primary renal
disease, BMI, CVD, lung disease, liver
disease, malignancy, parathyroidectomy,
albumin, hemoglobin, K, Ca, P, CRP, iPTH,
serum iron, ferritin

de Roji
van Zuijdewijn
et al.
(2015) [71]

HD 184,
HDF 181

Median
1.8 years

0.5 Mean
3.1 years

All-cause mortality 0.88, cardiovascular
mortality 0.73, sudden death 0.78 per
0.1-mmol/L (0.24 mg/dL) increase in
serum Mg levels

Age, sex, HD duration, weekly HD time,
dialysis modality (HD/HDF), residual renal
function, BMI, BP, DM, CVD, albumin, Ca, P,
iPTH

Lacson et al.
(2015) [33]

27,544,
HD

Median
2.5 years

Various 1 year All-cause mortality 0.89 in the highest
Mg group (≥ 1.25 mmol/L) vs. the
reference group (≥ 0.80, < 0.95 mmol/
L) (not significant)

Case mix: age, sex, race/ethnicity, HD
duration, vascular access type, BSA
Laboratory: Kt/V, DM, albumin, hemoglobin,
Ca, P, iPTH

Li et al. (2015)
[34]

9359,
HD

Incident
patients

Not
mentioned

Mean
19 months

No relationship between time-varying
serum Mg levels and all-cause
mortality after all adjustments

Age, sex, race/ethnicity, Kt/V, BMI, DM,
hypertension, dyslipidemia, CVD, lung
disease, liver disease, cancer, BUN, albumin,
ALP, hemoglobin, K, Ca, P, iPTH, ferritin,
nPCR

Cai et al.
(2016) [35]

253, PD Incident
patients

0.25 Median
29 months

All-cause mortality 0.075 in the
normomagnesemia group (≥ 1.7 mg/
dL) vs. the hypomagnesemia group
(< 1.7 mg/dL)
Cardiovascular mortality 0.003 in the
normomagnesemia group vs. the
hypomagnesemia group

Age, sex, BMI, DM, BP, urine output, net UF,
weekly Ccr, residual renal function,
albumin, total cholesterol, triglycerides,
hemoglobin, Na, Ca, P, iPTH, calcium
carbonate, VDRAs

Yang et al.
(2016) [72]

10,692,
PD

Incident
patients

Not
mentioned

Median
13 months

Hospitalization risk 1.09 in the lowest
Mg quintile (< 1.8 mg/dL) vs. the
middle quintile (≥ 2.0, < 2.2 mg/dL)
All-cause mortality 0.97 in the lowest
Mg quintile vs. the middle quintile
(not significant)

Age, sex, race/ethnicity, primary insurance,
primary renal disease, total weekly Kt/V,
residual renal function, 4-h D/P Cr ratio,
DM, hypertension, CVD, albumin,
hemoglobin, K, Ca, P, bicarbonate, iPTH,
ferritin, iron saturation

Abbreviations: 4-h D/P Cr ratio 4-h dialysate to plasma creatinine ratio from the peritoneal equilibration test, ALP alkaline phosphatase, BMI body mass index, BP
blood pressure, BUN blood urea nitrogen, BSA body surface area, Ccr creatinine clearance, CKD chronic kidney disease, CRP C-reactive protein, CVD cardiovascular
disease, DM diabetes mellitus, eGFR estimated glomerular filtration rate, HD hemodialysis, HDF hemodiafiltration, HR hazard ratio, iPTH intact parathyroid hormone,
nPCR normalized protein catabolic rate, PBs phosphate binders, PD peritoneal dialysis, RAAS renin-angiotensin-aldosterone system, UA uric acid, UF ultrafiltration,
VDRAs vitamin D receptor agonists
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change also resulted in lower serum albumin levels in
those with than in those without hypomagnesemia (2.5
± 0.12 g/dL vs. 3.2 ± 0.12 g/dL, P < 0.01). Regardless of
these findings, the effects of dialysates with higher Mg
concentrations on cardiovascular disease and mortality
have not yet been examined. Dialysate Mg-related
clinical trials are of interest and need to be conducted in
the future.

Mg-containing phosphate binders
It is important to control hyperphosphatemia, which
leads to cardiovascular calcification and increased mor-
bidity and mortality in CKD patients [74]. Mg is con-
tained in some phosphate binders and its affinity for P is
weaker than that of Al and Ca. Since the mid-1980s,
magnesium hydroxide was used to replace Al-containing
phosphate binders but caused diarrhea and mild hyper-
kalemia [75]. Magnesium carbonate effectively con-
trolled serum P levels with less adverse effects [75].
However, Mg-containing phosphate binders have not
been widely used because of concerns regarding hyper-
magnesemia. In 2010, a randomized controlled trial
(RCT), the CALMAG study, which compared the effi-
cacy of calcium acetate/magnesium carbonate and seve-
lamer hydrochloride in HD patients, was reported [59].
At week 25, mean reductions in serum P from baseline
in the calcium acetate/magnesium carbonate group and
sevelamer group were similar. Serum Mg levels in the
former group significantly increased from baseline (0.73
± 0.56 mg/dL [0.30 ± 0.23 mmol/L]), whereas a slight in-
crease was observed in the latter group (0.10 ± 0.36 mg/
dL [0.04 ± 0.15 mmol/L]). Gastrointestinal adverse
events occurred more frequently in the sevelamer group
(23.6 vs. 13.6%). The authors concluded that magnesium
carbonate was a tolerable and effective agent in the
treatment of hyperphosphatemia.
A few interventional studies have examined the effects

of Mg-containing phosphate binders on cardiovascular
lesions, as shown in Table 3 [76, 77]. Furthermore, their
effects on mortality currently remain unknown. Tzanakis
et al. randomly assigned 59 HD patients to calcium acetate

or calcium acetate/magnesium carbonate for 12 months
[77]. At the end of the study, the number of patients with
improved carotid IMT was significantly higher in the
Mg-containing phosphate binder group than in the
Ca-containing binder group (P = 0.04). Turgut et al. also
showed the beneficial effects of Mg supplementation [76].
However, these findings appeared to be inconclusive
because of the relatively small sample size as well as the
accuracy and reproducibility of the evaluation methods.
In a sub-analysis of the aforementioned Japanese

National Registry data [69], Sakaguchi et al. reported that
the mortality risk of HD patients with hyperphosphatemia
was attenuated with increases in serum Mg levels [78]. If
large-scale RCTs successfully show the benefits of
Mg-containing phosphate binders for cardiovascular dis-
ease and mortality, these drugs may be widely used in the
control of hyperphosphatemia.

Mg-containing laxatives
The prevalence of constipation requiring laxative
therapy is high in ESRD patients [79, 80]. Mg-containing
laxatives may be used to concurrently treat constipation
and hypomagnesemia. However, these drugs should be
used carefully. Serum Mg levels were increased to ap-
proximately 10 mg/dL (4.11 mmol/L) by magnesium
oxide administered at 3 g/day in dialysis patients, result-
ing in muscle paresis or impaired consciousness [81, 82].
Toprak et al. conducted a RCT including 128 pre-
diabetic patients with hypomagnesemia (< 1.8 mg/dL
[0.74 mmol/L] in males and < 1.9 mg/dL [0.78 mmol/L]
in females) and mild to moderate CKD (estimated GFR
30–60 mL/min/1.73 m2) [83]. Patients were assigned to
magnesium oxide or placebo for 3 months. Magnesium
oxide was administered at 613.2 mg/day and serum Mg
levels increased from 1.70 ± 0.13 mg/dL (0.70 ±
0.05 mmol/L) to 1.91 ± 0.22 mg/dL (0.79 ± 0.09 mmol/
L). At the end of this study, insulin resistance, glycemic
control, and uric acid levels were better in the former
than in the latter patient group. These improvements in
metabolic indices were accompanied by an increase in
not only serum Mg, but also albumin levels.

Table 3 Interventional studies examining effects of Mg-containing phosphate binders on cardiovascular calcification/atherosclerosis

Authors
(year)

Subjects Study design Outcome Serum Mg
levels in the Mg
group (mg/dL)

Benefits of Mg
supplementation

Turgut
et al.
(2008)
[76]

47, HD RCT with assignment to magnesium
citrate or calcium acetate for 2 months

Changes in carotid intima-media
thickness evaluated by ultrasound

Pre: 2.50 ± 0.36
Post: 2.69 ± 0.39

Yes

Tzanakis
et al.
(2014)
[77]

72, HD RCT with assignment to calcium
acetate or calcium acetate/magnesium
carbonate for 12 months

Changes in arterial calcification of the femur,
pelvis, hands, and abdomen evaluated by plain
X-ray using vascular calcification scores

Pre: 2.59 ± 0.29
Post: 2.83 ± 0.38

Yes

Abbreviations: HD hemodialysis, RCT randomized controlled trial
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Sevelamer
Sevelamer is a Ca-free, Mg-free, non-absorbable anion ex-
change resin that is used to control hyperphosphatemia.
There are two salts of sevelamer: sevelamer hydrochloride
and sevelamer carbonate. This drug has been reported to
increase serum Mg levels. Mitsopoulos et al. found that
the mean serum Mg levels significantly increased from
2.75 mg/dL (1.13 mmol/L) to 2.90 mg/dL (1.19 mmol/L)
during an 8-week treatment with sevelamer [84]. Chertow
et al. also reported a significant increase in serum Mg
levels induced by sevelamer [85]. In addition, two
cross-sectional studies showed an independent rela-
tionship between sevelamer and higher serum Mg
levels [36, 86]. It seems plausible to speculate that
this effect of sevelamer depends on its adsorptive ac-
tion on some substances other than P. Free fatty
acids in the intestinal lumen may combine with Mg
to form non-absorbable soaps. Therefore, Mitsopoulos
et al. speculated that sevelamer binds biliary salts,
thereby increasing the quantity of free Mg available
for intestinal absorption [84]. On the other hand,
Nagano et al. reported the contribution of magnesium
stearate, which is included as a pharmaceutical excipi-
ent in phosphate binders, to increases in serum Mg
levels [87].
Sevelamer has been reported to exert favorable effects

on inflammation, oxidative stress, glucose metabolism,
lipid profiles, and cardiovascular disease [88, 89], similar
to Mg supplementation. Although the precise mecha-
nisms responsible for these effects of sevelamer have not
yet been elucidated, the increases in serum Mg levels in-
duced by the drug itself may be included in these
mechanisms.

Conclusions
In the clinical practice of dialysis therapy, concerns need
to shift from hypermagnesemia to hypomagnesemia.
Dialysis patients, particularly those treated with PD, are
exposed to the risk of hypomagnesemia because of the
use of dialysates with low Mg concentrations as well as
decreased intake/absorption and the adverse effects of
some drugs. Observational studies have almost consist-
ently indicated that hypomagnesemia is associated with
cardiovascular disease and mortality in CKD. However,
this relationship may depend on a patient’s race or re-
gion. Dialysates with higher Mg concentrations and
some drugs including phosphate binders are useful for
increasing serum Mg levels, but few interventional stud-
ies have examined the benefits of the correction of hypo-
magnesemia. Further studies are required in order to
establish the efficacy of Mg supplementation in CKD pa-
tients. In addition, it is important to establish the harm-
less upper limit of serum Mg levels.
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