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Abstract

Peritonitis is an important complication of peritoneal dialysis. Several animal peritonitis models have been described,
including bacterial and fungal models that are useful for studying inflammation in peritonitis. However, these models
have limitations for investigating peritoneal fibrosis induced by acute inflammation and present difficulties in handling
the infected animals. Animal models of peritonitis which induced peritoneal fibrosis are important for establishing new
therapies to improve peritoneal damage induced by peritonitis. Here, we present an overview of representative animal
models of peritoneal dialysis-associated infectious and non-infectious peritonitis, including our novel animal models
(scraping and zymosan models) that mimic peritoneal injury associated with fibrosis and neoangiogenesis caused by

bacterial or fungal peritonitis.
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Background

There are several reasons why peritonitis is important in
peritoneal dialysis (PD) treatment. First, peritonitis re-
mains an important cause of death in PD patients. The
mortality rate for peritonitis is approximately 3% [1, 2],
and peritonitis is a contributing cause of death in more
than 10% of PD patients [3]. Second, peritonitis remains
an important factor in withdrawal from PD. In the PD
registry of the Nagoya group from both 2005 to 2007 [4]
and 2010 to 2012 [5], the most common reasons for
withdrawal from PD have been PD-related peritonitis,
followed by dialysis failure/ultrafiltration failure and so-
cial problems such as lack of family support. PD periton-
itis is primarily caused by gram-positive organisms that
typically result from touch contamination. The mean in-
cidence of peritonitis as reported twice from a study
over a 3-year period was one episode every 42.8 [4] and
47.3 [5] patient-months. Third, peritonitis presents a risk
for the development of encapsulating peritoneal sclerosis
(EPS) [6]. The duration of peritonitis is independently
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associated with EPS [7]. In particular, fungal and Pseudo-
monas infections put patients at a higher risk for the de-
velopment of EPS [8]. Fourth, peritonitis is one of the
risks for a decrease in residual renal function. The num-
ber of peritonitis episodes has been reported to be an in-
dependent predictor of the development of anuria [9].
Fifth, peritonitis is an important cause of peritoneal
membrane injury, which leads to peritoneal fibrosis,
neoangiogenesis, and peritoneal dysfunction [10].

The characteristic features of chronic peritoneal damage
in PD treatment are the loss of ultrafiltration capacity as-
sociated with morphological submesothelial fibrosis with
extracellular matrix accumulation, and neoangiogenesis.
The pathogenesis of peritoneal fibrosis is attributed to a
combination of bioincompatible factors in PD fluid (PDF)
and peritonitis, especially repeated episodes of peritonitis
[11]. We have reported that uremia is associated with
inflammation of the peritoneal membrane [12]. Histologi-
cally, acute peritonitis can cause morphological damage to
the peritoneum [10, 13]. Detachment and disintegration of
mesothelial cells is observed, along with the appearance of
fibrin exudation and numerous infiltrating cells, ultimately
resulting in internal structures becoming unrecognizable
[6]. Therefore, peritonitis plays a crucial role in the
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development of peritoneal damage leading to peritoneal
membrane failure.

Animal models of peritonitis-induced peritoneal fibrosis
are important for establishing new therapies to improve
peritoneal damage induced by peritonitis.

Peritonitis models induced by bacteria or fungus
There are several reports of animal models of peritonitis
induced by bacteria or fungi (Table 1). The pathogenic mi-
croorganisms used to induce peritonitis include Staphylo-
coccus aureus [14-18], Staphylococcus epidermidis
[19, 20], Pseudomonas aeruginosa [21], and Candida
albicans [22]. These models of infectious peritonitis
have been mainly used to elucidate the mechanism of
inflammation in the membrane and the mechanism of
acute peritoneal membrane failure. However, the acute
peritonitis model is not typically used to study peritoneal
fibrosis.

A catheter-induced model of gram-positive bacterial
peritonitis has been developed, which is an acute bacterial
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peritonitis model with bacteria originating from skin flora
due to lack of aseptic precautions [23-25]. In subsequent
studies, these researchers used a model of lipopolysacchar-
ide (LPS)-induced peritonitis instead of the gram-positive
bacteria-induced peritonitis model [26, 27]. They investi-
gated the role of nitric oxide (NO) released by endothelial
NO synthase (eNOS) in the gram-positive bacterial
peritonitis model [23] and the LPS-induced peritonitis
model [27] and suggested that the selective inhibition
of eNOS might ameliorate the poor peritoneal function
caused by acute peritonitis. They reported that mice
injected with LPS developed a cloudy dialysate with in-
creased white blood cell counts and NO metabolite
levels and inflammatory cell infiltration in the periton-
eum. These observations are similar to those of the
gram-positive peritonitis model.

The mechanisms of inflammation were studied in the
bacterial and fungal peritonitis models; however, these
models were not used to investigate the long-term com-
plications such as fibrosis and neoangiogenesis.

Table 1 Summary of representative rodent models used to study peritoneal dialysis and its associated complications

Representative Methods Species Experimental Peritoneal ~ Neoangiogenesis Fibrosis EPS References
animal models period dysfunction
Peritonitis model
Infectious model Bacteria Staphylococcus ~ Mouse 2 days No report  No report No report —  [14]
aureus Rat 2 weeks No report ~ No report + - [15-18]
Staphylococcus~ Mouse 2 weeks No report  No report No report —  [20]
epidermidis
Pseudomonas Rat 1 week No report ~ No report No report —  [21]
aeruginosa
Fungus Candida albicans Mouse 1 day No report  No report No report —  [22]
Performance without Mouse 1 week + + No report — [23]
aseptic precautions Rat 1 week + + No report —  [23-25]
Non-infectious model LPS Mouse 1 day + No report No report —  [26, 27]
Rat 1 day + No report No report — [28, 29]
PDF with LPS Rat 3-6 weeks + + + - [29-36]
SES Mouse 2 days No report ~ No report No report —  [11, 37]
Scraping Rat 2 weeks + + + - [38, 39]
Zymosan with Rat 5 weeks No report  + + +  [64,67]
scraping
PDF Mouse  4-5 weeks + + + - [78-83]
Rat 1-20 weeks  + + + - [69-77]
Chlorhexidine Mouse  1-8 weeks + + + + [97-108]
Rat 1-8 weeks + + + + [84-96]
Methylglyoxal Mouse  3-7 weeks + + + +  [113,114]
Rat 3 weeks + + + +  [109-112]
TGF-B1 Mouse 1-10 weeks  No report  + + + [115-118]
Rat 1-4 weeks + + + - [119, 120]

LPS lipopolysaccharide, PDF peritoneal dialysis fluid, SES a lyophilized cell-free supernatant, TGF-B1 transforming growth factor-B1, EPS encapsulating peritoneal sclerosis
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Non-infectious peritonitis models

Currently, the number of reports in which investigators
use the non-infectious peritonitis model is increasing.
The non-infectious model is convenient and useful for
handling animals and performing experiments. We suggest
that a model of peritoneal fibrosis induced in a peritonitis
model will help identify new strategies for preventing peri-
toneal fibrosis. Many studies have used the LPS-induced
peritoneal injury model [26-36]. LPS derived from
Escherichia coli (Sigma, St. Louis, MO) is frequently
used [26-30, 33, 35]. A method involving a single LPS
dose was used to study peritoneal inflammation and
dysfunction [26-29]. Rat peritoneal inflammation and
significant changes in neoangiogenesis were caused by
daily administration of PDF over 3 weeks following an
initial exposure to LPS [29-35].

Another non-infectious peritonitis model induced by
administration of lyophilized cell-free supernatants from
Staphylococcus epidermidis has been used to study the regu-
lation of inflammation and leukocyte trafficking [11, 37].
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Hurst et al. showed that interleukin-6 (IL-6)/soluble IL-6
receptor trans-signaling, which involves signal transducer
and activator of transcription 3 (STAT3) activation,
regulates chemokine secretion and polymorphonuclear
neutrophil apoptosis in the peritoneal cavity. These
mechanisms of inflammation and leukocyte trafficking
have been clearly shown in the non-infectious model.

Here, we introduce a model of peritoneal fibrosis that
we generated in rats and mice that is induced by acute
inflammation with mechanical scraping, the so-called
“scraping model.”

Scraping model

We first reported the scraping model as a non-infectious,
peritonitis-induced peritoneal fibrosis model [38]. After
opening the rat abdomen under anesthesia, the right par-
ietal peritoneum received hand-driven scratching for 1 min
using the edge of a 15-ml centrifuge tube (Fig. 1). Rats
freely consumed food with or without NaCl loading after
surgery [38-40]. Similarly, in mice, the right parietal

<Side of head>

Skin and
subcutaneous
connecting tissues

\ VT
Vs N

Skin and subcutaneous
connecting tissues

<Side of head>

Cutting hair by a clipper B-1 c_,labdominal muscles
- N\ [ L Y0
p A
D-1 E-1 2
— @ @ F-1 peritoneal cavity
— abdominal
A B-2 4 c2 abdominal muscles\
. . Ski d subcut:
<side o > S g ones i \
VT v I ‘ @
| » E-2 F-1
B-3 C-3

abdominal muscles

abdominal muscles

<Side of tail>

Fig. 1 Procedures to generate scraping model. Used by permission from Methods Mol Biol [40]
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peritoneum was scraped for 90 s with the cap of an in-
jection needle.

In this model (Fig. 2), neutrophil infiltration with fibrin
exudation from the scraped peritoneum was demonstrated
in 6 to 24 h after surgery. The predominant infiltrating
cells switched to a mononuclear population on day 3, and
inflammation gradually decreased thereafter. From days 7
to 14, the peritoneum became markedly thickened with
the accumulation of alpha-smooth muscle actin (a-SMA)-
positive fibroblasts and type III collagen. Mesothelial
cells were not detected in 6 to 24 h after scraping, while
approximately 30 and 70% of the total peritoneal length
was covered with mesothelial cells on days 3 and 14, re-
spectively. Increased CD31-positive blood vessel density
was observed, which peaked at day 14. Transforming
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growth factor-p (TGF-B) and plasminogen activator
inhibitor-1 (PAI-1), mainly expressed in the submesothe-
lial compact zone, increased rapidly starting on day 3 and
peaked at day 14. TGF-f and PAI-1 messenger RNA
(mRNA) expression was upregulated from day 3 and
peaked at day 7. In contrast, monocyte chemotactic
protein-1 (MCP-1) mRNA rapidly increased and peaked
at day 3. The pathology of this model in the early stage
is characterized by strong infiltration of neutrophils
and macrophages. The latter stage of this model is char-
acterized by fibrosis and neoangiogenesis. In addition,
peritoneal membrane permeability increased in rats that
underwent bilateral scraping [38]. The pathological fea-
tures and time course of this model are summarized in
Figs. 2 and 3a.
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Fig. 2 Pathological findings of rat scraping model. Used by permission from Am J Physiology [38]
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Fig. 3 Time course of rat scrape model (a) and zymosan-induced
fungal peritonitis model (b)

Using this model, we investigated the effects of min-
eralocorticoid receptor (MR) blockade with salt loading
[38]. The local renin-angiotensin-aldosterone system
(RAAS) is thought to play a role in peritoneal injury in PD
patients [41]. Peritoneal mesothelial cells have been ob-
served to express angiotensinogen, angiotensin-converting
enzyme (ACE), and angiotensin II type 1 receptors
(AT1R) [42, 43]. We found that MRs were expressed
by rat fibroblasts and scraped peritoneum. Treatment
with spironolactone suppressed macrophage infiltration,
neoangiogenesis, and fibrosis, which is associated with the
suppression of TGF-p and PAI-1 expression, thereby
resulting in improvement of peritoneal dysfunction, in-
cluding ultrafiltration, glucose transport, and albumin
leakage [38]. The effects of spironolactone have also been
shown in the LPS-induced peritoneal injury model [36].

In addition, we demonstrated the effects of atrial natri-
uretic peptide (ANP) in this model [39]. ANP has been
used as a diuretic and vasodilator in clinical settings.
ANP has been shown to play an important function in
the inhibition of RAAS [44, 45]. ANP and brain natriuretic
peptide (BNP) have been reported to prevent cardiac fi-
brosis [44, 46] and renal fibrosis [47-49], and to reduce
infarct size in acute myocardial infarction [50]. We dem-
onstrated that AT1R, ACE, and atrial natriuretic peptide
receptor (NPR-A) mRNA expression were increased and
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peaked at days 14, 7, and 7, respectively. ANP administra-
tion resulted in a significant reduction in macrophage in-
filtration, fibrosis, and neoangiogenesis [39]. In this model,
the salt loading progression of peritoneal fibrosis is likely
to be involved in local RAAS activation. Administration of
an MR blocker or ANP with antibiotics may prevent
peritoneal membrane dysfunction associated with fibro-
sis and neoangiogenesis in human bacterial peritonitis.
In a small study, 25 mg/day of spironolactone for 6 months
was shown to reduce CD20 and collagen IV levels in the
human peritoneal membrane [51]. Recently, the scraping
model was used to study the effectiveness of cell therapy
using the mesothelial cells to prevent peritoneal damage
in PD patients [52].

Zymosan-induced fungal peritonitis model

By modifying the scraping model, we established the
zymosan-induced fungal peritonitis model. Although
fungal peritonitis is not common, yeast infection with the
most common Candida species results in a poor outcome
with high mortality [53-55]. The 2016 International Soci-
ety for Peritoneal Dialysis guidelines recommends removal
of the PD catheter in fungal peritonitis [56]. Several
clinical observations have suggested that EPS could be
induced by a single occurrence of fungal peritonitis
[56—60]. The cell walls of many types of yeast activate
various signaling reactions, including the complement
system [61]. Complement maintains host homeostasis
by eliminating microorganisms and irregular cells and
also regulates cellular immunity. The complement system
in the peritoneum is continuously active at low levels, and
complement regulators (CRegs) regulate complement acti-
vation. Irregular activation of complement leads to tissue
damage in many diseases [62, 63].

We demonstrated the expression of CRegs, Crry, CD55,
and CD59 in rat peritoneum, especially along the meso-
thelial cell layer [64]. In rat peritoneum, combined
blockade of Crry and CD59 induced severe focal in-
flammation with edema [65]. We examined the state of
complement activation in the aforementioned rat scrap-
ing model, and C3 and C3b were transiently present in
the inflammatory stage at day 3 [64]. Zymosan is abundant
in the cell walls of fungi and activates the complement
system through the alternative pathway [66].

We demonstrated that administration of zymosan after
scraping promoted severe peritoneal injury that is patho-
logically similar to human fungal peritonitis. Zymosan
(5 mg/rat/day, 2 mg/mouse/day) mixed with PDF was
intraperitoneally injected into the rat or mouse abdominal
cavity for up to 5 days after scraping the rat or mouse
peritoneum [40, 64, 67]. Macroscopic findings in the
zymosan rats showed the presence of a few white plaques
at day 3, and yellow-white plaques at day 5, while no
plaques were found in the control scraping model.
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Plaque fusion resulted in the formation of a yellow-white
sheet covering the peritoneum with numerous small
vessels running into the plaques, which suggests the oc-
currence of peritoneal neovascularization in the zymo-
san model at day 5. Peritoneal thickening associated
with severe infiltration of inflammatory cells continued
and remained present in the zymosan model at day 36,
while the peritoneum was of normal appearance in the
control scraping rats.

In recent experiments, we found that disease severity
was affected by the lots of the zymosan (Sigma-Aldrich,
St. Louis, MO). Expression of CRegs, Crry, CD55, and
CD59 transiently decreased in the control scraping model
at day 5. In contrast, CRegs expression was further de-
creased in the zymosan model at day 5 and continued de-
creasing up to day 18. Complement activation products,
C3b and membrane attack complex (MAC), were clearly
found in the zymosan model from days 1 to 5, and small
amounts of these products remained at days 18 and 36.
The time course of this model is summarized in Fig. 3b.

Systemic complement depletion by cobra venom fac-
tor or local suppression of complement activation by
Crry-immunoglobulin or soluble complement receptor
1 dramatically reduced complement activation, periton-
eal thickening, and inflammation. These findings clearly
indicated that the zymosan model is a complement-
dependent model of severe proliferative peritonitis [64].
Fungal peritonitis is known to be one of the causes of
EPS. Subsequently, we successfully demonstrated that
further enhancement of complement activation by inhi-
biting CRegs and enhancing systemic activation with
cobra venom factor in the zymosan model induced fi-
brin exudation, which is the initial event of EPS [68].

Other models of non-infectious peritoneal injury associated
with inflammation and fibrosis

Administration of PDF into the abdominal cavity of
rats and mice by repeated intraperitoneal injection or
implanting a catheter is a method used to study the
pathophysiological changes of the peritoneum associated
with PD [69-83], but a non-peritonitis model. Daily intra-
peritoneal injection of 4.25% glucose dialysate into the rat
abdominal cavity for 1 week induced an increased periton-
eal membrane transport rate and the absence of the peri-
toneal surface layer, as observed by electron microscopy
[69, 70]. Daily injection of PDF (100 ml/kg, once or twice
daily) was performed for up to 8 or 12 weeks to obtain
morphological changes in the rat peritoneum [71-73]. Im-
plantation of a silicon catheter into the rat abdomen was
reported to amplify peritoneal inflammation from PDF
through a foreign body reaction [74]. However, the peri-
toneum of rats that received only a puncture without infu-
sion of any solution showed no functional or pathological
changes [73, 75].
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A model of renal insufficiency, such as 5/6 nephrec-
tomy, was used in combination with PDF infusion to
closely model the clinical situation of peritoneal dialysis
patients and to understand the influence of PD on re-
sidual renal function [76, 77]. Daily intraperitoneal expos-
ure of 1.5-3.0 ml of 4.25% glucose PDF for 4 or 5 weeks,
with or without implanting a catheter, produced peritoneal
dysfunction and morphological changes, such as fibrosis
and neoangiogenesis, in mice [78-83].

Chronic intraperitoneal exposure to chemical irritation
(chlorhexidine gluconate (CQG)) is used as an experimen-
tal model of peritoneal fibrosis with inflammation and
EPS. Suga et al. developed a CG-induced peritoneal fi-
brosis model in rats [84]. Daily injection of 0.1% CG in
15% ethanol, dissolved in 2—3 ml saline per 200 g body
weight, was administered in the rat peritoneal cavity
[85-87]. At day 7, the peritoneal tissue was partially
thickened with edema and showed initial accumulation
of connective tissues and modest cell migration. At day 14,
significant alterations were found, including peritoneal
thickening with edema, cell infiltration, and neoangiogen-
esis. At days 21 to 28, the peritoneal tissue was markedly
thickened and showed remarkable proliferation of collagen
fibers. The number of macrophages gradually increased in
the thickened areas and reached a maximum at day 21. At
day 28, neoangiogenesis had decreased, whereas collagen
fibrils had accumulated. At day 35, fibrillary elements with
cell infiltration occupied the submesothelial zone. Periton-
eal resting for 3 weeks after 3 weeks of CG exposure ame-
liorated some functional parameters in the peritoneum;
however, elevated peritoneal thickness and fibrosis contin-
ued during the resting period [88—91]. Placing an infusion
pump in the rat abdominal cavity was reported as an alter-
native administration route for CG [92-94].

A lower dosage of CG is an option for producing mild
peritoneal injury [95, 96]. Mice were given daily intra-
peritoneal administration of 0.3 ml or 10 ml saline/kg
body weight containing 0.1% CG in 15% ethanol [97, 98].
Peritoneal fibrosis and increased infiltration of mono-
nuclear cells were observed over time. Peritoneal fibrosis
reached the chronic inflammatory stage, and macroscopic
evidence of EPS was observed by 8 weeks. Lower doses of
CG or shorter time courses produced milder and more in-
frequent development of peritoneal fibrosis [99, 100]. Re-
cent studies showed that a standard peritoneal fibrosis
model could be produced in mice following treatment
with 0.1% CG every other day or three times a week for
1-3 weeks [101-108].

Glucose degradation products contained in PDF con-
tribute to the biocompatibility of conventional PDF and
are risk factors for EPS. Methylglyoxal (MGO) is an ex-
tremely toxic glucose degradation product, and adminis-
tration of PDF containing MGO can be used as an animal
peritoneal fibrosis model. Rats were given intraperitoneal
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injections of 100 ml/kg of 2.5% glucose PDF (pH 5.0) con-
taining 20 mM MGO every day for 3 weeks [109-111].
Peritoneal function decreased significantly, and fibrous
peritoneal thickening with proliferation of mesenchymal-
like mesothelial cells and abdominal cocoon was induced.
The combination of low doses of MGO and adenine-
induced renal failure accelerated the progression of fi-
brous peritoneal thickening, whereas both MGO and renal
failure alone did not [112]. Intraperitoneal injection of
PDF (100 ml/kg) containing 20 or 40 mM MGO for five
consecutive days per week for 3 weeks induced peritoneal
injury in mice [113, 114]. We clearly showed the presence
of severe lymphangiogenesis in the diaphragm of both CG
and MGO models [96, 114]. TGE-p is a central mediator of
peritoneal fibrosis. Overexpression of TGF-f1 driven by in-
traperitoneal adenovirus administration induced peritoneal
fibrosis through epithelial mesenchymal transition, neoan-
giogenesis, and poor peritoneal function in mice [115-118]
and rats [119, 120]. Other chemical irritants, such as deoxy-
cholate [121], household bleach [122] and acidic solutions
[123], were also reported to produce peritoneal inflamma-
tion, fibrosis, and abdominal cocoon in rats.

Conclusions

Non-infectious peritonitis models are convenient and
useful for animal handling and performing experiments.
The peritoneum in the scraping model showed signs of
peritonitis initially and fibrosis at a later stage. These
pathological changes, along with alterations in solute
transport, mimic those observed in bacterial peritonitis.
This model is useful for exploring strategies for the treat-
ment and prevention of peritoneal fibrosis and membrane
failure. The zymosan model is useful for studying the
mechanisms of fungal peritonitis and the drugs used to re-
duce peritoneal damage induced by fungal peritonitis.
Anti-complement therapy might be useful as a therapeutic
in human fungal peritonitis and related peritoneal dam-
age. Other non-infectious models, such as CG and MGO
models, are also useful for investigating the pathophysi-
ology of fibrosis with inflammation, angiogenesis, and
lymphangiogenesis.
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